Avena barbata

Last updated

Avena barbata
Poaceae - Avena barbata (8304690940).jpg
Scientific classification OOjs UI icon edit-ltr.svg
Kingdom: Plantae
Clade: Tracheophytes
Clade: Angiosperms
Clade: Monocots
Clade: Commelinids
Order: Poales
Family: Poaceae
Subfamily: Pooideae
Genus: Avena
Species:
A. barbata
Binomial name
Avena barbata
Pott ex Link
Synonyms

Avena hirsuta

Avena barbata is a species of wild oat known by the common name slender wild oat. It has edible seeds. It is a diploidized autotetraploid grass (2n=4x=28). [1] Its diploid ancestors are A. hirtula Lag. and A. wiestii Steud (2n=2x=14), which are considered Mediterranean and desert ecotypes, respectively, comprising a single species. [2] A. wiestii and A. hirtula are widespread in the Mediterranean Basin, growing in mixed stands with A. barbata, though they are difficult to tell apart.

Contents

This is a winter annual grass with thin tillers (stems) growing up to 60 to 80 centimeters in maximum height, but known to sometimes grow taller. The bristly spikelets are 2 to 3 centimeters long, not counting the bent awn which is up to 4 centimeters in length. Avena barbata largely reproduces by selfing in natural populations, with very low rates of outcrossing. [3]

A. barbata is native to central Asia (as far east as Pakistan) and the Mediterranean Basin. As an introduced species it also occurs in other Mediterranean-like habitats of New Zealand, Australia, South Africa, Argentina, Chile, Brazil, and Uruguay. In Europe it has been reported in Finland, France, Germany, Norway, Bulgaria, and Austria. In North America it is an introduced species and noxious weed, where it is especially widespread in California. In California it has displaced native species of grass. [4] It is also found in Oregon, Washington, Hawaii, Massachusetts, Nevada, Arizona, and New Mexico. [5]

Genetic evidence indicates that A. barbata in Argentina and California originated from Spain, during the Spanish colonization of the Americas. [6]

Genetic studies of Californian populations

Californian populations of Avena barbata represent one of the most extensively studied examples of putative "ecotypes" in the plant literature. Its population genetics and evolution have been extensively examined since 1967, [7] primarily in the laboratories of R.W. Allard and Subodh Jain and their many students in the 1960s, 1970s, 1980s, and 1990s at U.C. Davis, [8] [9] [10] [3] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] and more recently by Robert Latta at the University of Dalhousie University in Nova Scotia. [22] [23]

The general pattern that emerged from these earlier studies was that throughout the Central Valley of California, consisting of semiarid grasslands and oak savannahs, and extending south to San Diego, populations of this species were dominated by a monomorphic phenotype possessing dark/black seeds with hairy lemmas, as well as smooth leaf sheaths; these morphological characters were correlated with a specific isozyme pattern as well as a specific ribosomal DNA genotype. This "ecotype" is called the "xeric" type. Populations outside the Central Valley, along the coastal strip, the intermontane regions of the coast ranges, and the higher foothills of the Sierra Nevada mountains, were either monomorphic for white seeds with generally smooth lemmas and hairy leaf sheaths or were polymorphic with varying mixtures of the seed and leaf sheath characters. These populations were also either monomorphic or polymorphic for isozyme patterns and ribosomal DNA genotypes other than the xeric type; they are called the "mesic" type. The mesic type has never apparently been observed south of approximately the same latitude as Monterey, either in coastal ranges, the Central Valley, or the foothills of the Sierras. When the morphological traits as well as the allozyme and ribosomal DNA genotypes were considered together, it is argued that there are six ecotypes in the otherwise "mesic" classification. [21]

Whole-plant studies also showed that the xeric and mesic types differed from each other for many characters such as the flag leaf, primary stem height, number of tillers, weight and number of seeds, dry weight, and flowering time, with the mesic ecotype being generally larger and more fecund, overall, than the xeric type; further, the flag leaves of the xeric type were consistently smaller than the mesic type under many conditions. [16] [17] It was further shown that xeric populations that were monomorphic for the seed and leaf sheath characters and allozymes had a less genetic variation for quantitative genetics characters than mesic populations; however, quantitative genetic variation existed in all xeric or mesic populations that were studied. [19] Consequently, with all genetic characters studied, xeric populations of the xeric ecotype were more similar to each other than they were to the music ecotype, and the evidence indicated that the various ecotypes represented significant linkage disequilibrium and coadapted genetic complexes. [24]

For field identification purposes, the leaf sheath pubescence in the seedling stage and lemma color at seed maturity as well as the flag leaf dimensions would reliably separate the xeric from the mesic ecotypes throughout California.

Early on it was speculated that the genetic patterns observed in A. barbata were highly correlated with rainfall and temperature. The general pattern at both a macro and micro geographical scale was that the monomorphic "xeric" type occurred in those regions with between 250mm and 500mm of rainfall, while the polymorphic and monomorphic "mesic" populations occurred in those areas of California with greater than 500mm. [3] [13] [21]

Regardless of the correlations found with the mesic and xeric genotypes with rainfall in California, greenhouse experiments have not shown that the xeric type has greater reproductive capacity or other physiologic [25] superiority to the mesic under artificially induced wet or dry conditions. In fact Latta argues that the mesic type is superior to the xeric, and may be supplanting the xeric in those areas where the xeric has been dominant, at least in Northern California. [26]

Genetic studies of Mediterranean populations

Avena barbata has been studied in Spain, Israel, and Morocco by students and colleagues of R.W. Allard at U.C. Davis, Pèrez de la Vega and Pedro Garcia of the University of Leon, and E. Nevo in Israel ( [27] [28] [29] ). [30] The general pattern that has emerged is that there is more genetic variability in the Mediterranean populations than there are in Californian populations. Further, the multi-locus genotypes found in California are unique to California. The Mediterranean populations have their own unique sets of multi-locus genotypes. There is a unique 14-locus allozyme genotype specific to the colder regions of Spain.

Neither the "xeric" nor monomorphic "mesic" genotypes described in California are found in Spain.

Genetic studies of Argentinian populations

Both Californian and Argentinian populations represent a subset of the genetic variability found in Spain, on a locus by locus comparison. However, unlike Spain, Argentina has one widespread 14 locus allozyme genotype called the "Pampeano" type, which is not found in Spain; it differs from the Californian "xeric" type at three of the 14 loci examined. The "xeric" Californian type is found in 6% of the plants examined in Argentina; the "xeric" type also occurs in Chile.

The genetic evidence indicates that Avena barbata came to both Argentina and California from southwest Spain. [6]

Related Research Articles

An allele, or allelomorph, is a variant of the sequence of nucleotides at a particular location, or locus, on a DNA molecule.

<span class="mw-page-title-main">Dominance (genetics)</span> One gene variant masking the effect of another in the other copy of the gene

In genetics, dominance is the phenomenon of one variant (allele) of a gene on a chromosome masking or overriding the effect of a different variant of the same gene on the other copy of the chromosome. The first variant is termed dominant and the second is called recessive. This state of having two different variants of the same gene on each chromosome is originally caused by a mutation in one of the genes, either new or inherited. The terms autosomal dominant or autosomal recessive are used to describe gene variants on non-sex chromosomes (autosomes) and their associated traits, while those on sex chromosomes (allosomes) are termed X-linked dominant, X-linked recessive or Y-linked; these have an inheritance and presentation pattern that depends on the sex of both the parent and the child. Since there is only one copy of the Y chromosome, Y-linked traits cannot be dominant or recessive. Additionally, there are other forms of dominance, such as incomplete dominance, in which a gene variant has a partial effect compared to when it is present on both chromosomes, and co-dominance, in which different variants on each chromosome both show their associated traits.

Population genetics is a subfield of genetics that deals with genetic differences within and among populations, and is a part of evolutionary biology. Studies in this branch of biology examine such phenomena as adaptation, speciation, and population structure.

Allele frequency, or gene frequency, is the relative frequency of an allele at a particular locus in a population, expressed as a fraction or percentage. Specifically, it is the fraction of all chromosomes in the population that carry that allele over the total population or sample size. Microevolution is the change in allele frequencies that occurs over time within a population.

<span class="mw-page-title-main">Polymorphism (biology)</span> Occurrence of two or more clearly different morphs or forms in the population of a species

In biology, polymorphism is the occurrence of two or more clearly different morphs or forms, also referred to as alternative phenotypes, in the population of a species. To be classified as such, morphs must occupy the same habitat at the same time and belong to a panmictic population.

Disassortative mating is a mating pattern in which individuals with dissimilar phenotypes mate with one another more frequently than would be expected under random mating. Disassortative mating reduces the mean genetic similarities within the population and produces a greater number of heterozygotes. The pattern is character specific, but does not affect allele frequencies. This nonrandom mating pattern will result in deviation from the Hardy-Weinberg principle.

<span class="mw-page-title-main">Haplotype</span> Group of genes from one parent

A haplotype is a group of alleles in an organism that are inherited together from a single parent.

A quantitative trait locus (QTL) is a locus that correlates with variation of a quantitative trait in the phenotype of a population of organisms. QTLs are mapped by identifying which molecular markers correlate with an observed trait. This is often an early step in identifying the actual genes that cause the trait variation.

Balancing selection refers to a number of selective processes by which multiple alleles are actively maintained in the gene pool of a population at frequencies larger than expected from genetic drift alone. Balancing selection is rare compared to purifying selection. It can occur by various mechanisms, in particular, when the heterozygotes for the alleles under consideration have a higher fitness than the homozygote. In this way genetic polymorphism is conserved.

In biochemistry, isozymes are enzymes that differ in amino acid sequence but catalyze the same chemical reaction. Isozymes usually have different kinetic parameters, or are regulated differently. They permit the fine-tuning of metabolism to meet the particular needs of a given tissue or developmental stage.

Genetic association is when one or more genotypes within a population co-occur with a phenotypic trait more often than would be expected by chance occurrence.

<i>Avena sterilis</i> Species of grass

Avena sterilis is a species of grass weed whose seeds are edible. Many common names of this plant refer to the movement of its panicle in the wind.

<span class="mw-page-title-main">Ancestry-informative marker</span>

In population genetics, an ancestry-informative marker (AIM) is a single-nucleotide polymorphism that exhibits substantially different frequencies between different populations. A set of many AIMs can be used to estimate the proportion of ancestry of an individual derived from each population.

Dr George B. Johnson is a science educator who for many years has written a weekly column "On Science" in the St. Louis Post-Dispatch. For over 30 years he was a biology professor at Washington University and a genetics professor at Washington University School of Medicine. He has authored 44 scientific papers and ten high school and college biology texts. Over 3 million students have learned biology from these texts.

In genetics, transgressive segregation is the formation of extreme phenotypes, or transgressive phenotypes, observed in segregated hybrid populations compared to phenotypes observed in the parental lines. The appearance of these transgressive (extreme) phenotypes can be either positive or negative in terms of fitness. If both parents' favorable alleles come together, it will result in a hybrid having a higher fitness than the two parents. The hybrid species will show more genetic variation and variation in gene expression than their parents. As a result, the hybrid species will have some traits that are transgressive (extreme) in nature. Transgressive segregation can allow a hybrid species to populate different environments/niches in which the parent species do not reside, or compete in the existing environment with the parental species.

Marker assisted selection or marker aided selection (MAS) is an indirect selection process where a trait of interest is selected based on a marker linked to a trait of interest, rather than on the trait itself. This process has been extensively researched and proposed for plant- and animal- breeding.

<span class="mw-page-title-main">TAS2R38</span> Protein-coding gene in the species Homo sapiens

Taste receptor 2 member 38 is a protein that in humans is encoded by the TAS2R38 gene. TAS2R38 is a bitter taste receptor; varying genotypes of TAS2R38 influence the ability to taste both 6-n-propylthiouracil (PROP) and phenylthiocarbamide (PTC). Though it has often been proposed that varying taste receptor genotypes could influence tasting ability, TAS2R38 is one of the few taste receptors shown to have this function.

<span class="mw-page-title-main">Fixed allele</span> Allele with a frequency of 1

In population genetics, a fixed allele is an allele that is the only variant that exists for that gene in a population. A fixed allele is homozygous for all members of the population. The process by which alleles become fixed is called fixation.

<span class="mw-page-title-main">Zygosity</span> Degree of similarity of the alleles in an organism

Zygosity is the degree to which both copies of a chromosome or gene have the same genetic sequence. In other words, it is the degree of similarity of the alleles in an organism.

<span class="mw-page-title-main">Robert W. Allard</span> American geneticist

Robert Wayne Allard was an American plant breeder and plant population geneticist who is widely regarded as one of the leading plant population geneticists of the 20th century. Allard became chair of the genetics department at University of California, Davis in 1967; he was elected to the National Academy of Sciences in 1973, and was awarded the DeKalb-Pfizer Distinguished Career Award and the Crop Science Science of America Award. He was honored as the Nilsson-Ehle Lecturer of the Mendelian Society of Sweden and as the Wilhelmine Key lecturer of the American Genetic Association. He also served as president of the Genetics Society of America, the American Genetic Association and the American Society of Naturalists.

References

  1. "The genetics of the diploidized tetraploid Avena barbata". Archived from the original on 2013-06-26. Retrieved 2013-06-07.
  2. Allard, R.W.; Garcia, P.; Saenz-de-Miera, L.E.; Perez, de la Vega (1993). "Evolution of multilocus genetic structure in Avena hirtula and Avena barbata". Genetics. 135 (4): 1125–1139. doi:10.1093/genetics/135.4.1125. PMC   1205744 . PMID   8307328.
  3. 1 2 3 Hamrick, J.L.; Allard, R.W. (1972). "Microgeographical variation in allozyme frequencies in Avena barbata". Proc. Natl. Acad. Sci. 69 (8): 2100–2104. Bibcode:1972PNAS...69.2100H. doi: 10.1073/pnas.69.8.2100 . PMC   426877 . PMID   16592002.
  4. "California Invasive Plant Council". Archived from the original on 2009-04-22. Retrieved 2008-12-05.
  5. "Avena barbata (slender oat)". CABI. Archived from the original on 22 April 2021. Retrieved 14 May 2021.
  6. 1 2 Guma, Irma-Rosana; Pèrez de la Vega, Marcelino; Garcia, Pedro (2006). "Isozyme variation and genetic structure of populations of Avena barbata from Argentina". Genetic Resources and Crop Evolution. 53 (3): 587–601. doi:10.1007/s10722-004-2682-2. S2CID   35868886.
  7. Jain, S. K.; Marshall, D.R. (1967). "Population studies in predominantly self-pollinating species. X. Variation in natural populations of Avena fatua and Avena barbata". American Naturalist. 101 (917): 19–33. doi:10.1086/282465. S2CID   84512527.
  8. Marshall, D.R.; Jain, S.K. (1969). "Genetic polymorphism in natural populations of Avena fatua and A. barbata". Nature. 221 (5177): 276–278. Bibcode:1969Natur.221..276M. doi:10.1038/221276a0. S2CID   4298517.
  9. Marshall, D.R.; Allard, R.W. (1970). "Maintenance of isozyme polymorphisms in natural populations of Avena barbata". Genetics. 66 (2): 393–399. doi:10.1093/genetics/66.2.393. PMC   1212502 . PMID   17248512.
  10. Marshall, D.R.; Allard, R.W. (1970). "Isozyme polymorphisms in natural populations of Avena fatua and A. barbata". Heredity. 25 (3): 373–382. doi: 10.1038/hdy.1970.38 .
  11. Clegg, M.T.; Allard, R.W. (1972). "Patterns of genetic differentiation in the slender wild oat". Proc. Natl. Acad. Sci. 69 (7): 1820–1824. Bibcode:1972PNAS...69.1820C. doi: 10.1073/pnas.69.7.1820 . PMC   426810 . PMID   16591999.
  12. Allard, R.W.; Babbel, G.R.; Clegg, M.T.; Kahler, A.L. (1972). "Evidence for coadaptation in Avena barbata". Proc. Natl. Acad. Sci. 69 (10): 3043–3048. Bibcode:1972PNAS...69.3043A. doi: 10.1073/pnas.69.10.3043 . PMC   389703 . PMID   4342975.
  13. 1 2 Miller, R.D. (1977). "Genetic Variability in the Slender Wild Oat Avena barbata in California". Ph.D. Dissertation, University of California, Davis.
  14. Allard, R.W.; Miller, R.D.; Kahler, A.L. (1978). The relationship between degree of environmental heterogeneity and genetic polymorphism. IN: 'Structure and functioning of plant populations'. Verhandelingen der Koninklijke Nederlandse Akademie van Wetenschappen, Afdeling Naturkunde, Tweede Reeks, deel 70.
  15. Hakim-Elahi, A. (1980). "Temporal changes in the population structure of the slender wild oat (Avena barbata) as measured by allozyme polymorphisms". Ph.D. Dissertation, University of California, Davis.
  16. 1 2 Price, S.C. (1980). "Polymorphism and phenomorphism in the tetraploid slender wild oat Avena barbata". Ph.D. Dissertation University of California, Davis.
  17. 1 2 Hutchinson, E.S. (1982). "Genetic markers and ecotypic differentiation of Avena bartata Pott ex Link". Ph.D. Dissertation, University of California, Davis.
  18. Pinero, D. (1982). "Correlations between enzyme phenotypes and physical environment in California populations of Avena barbata and Avena fatua". Ph.D. Dissertation, University of California, Davis.
  19. 1 2 Cluster, P.D. (1984). "Correlation between genetic variation for allo- zyme markers and quantitative characters in Avena barbata Pott. ex. Link". Ph.D. Dissertation, University of California, Davis.
  20. Price, S.C.; Shumaker, K.M.; Kahler, A.L.; Allard, R.W.; Hill, J.E. (1984). "Estimates of population differentiation obtained from enzyme polymorphisms and quantitative characters". Journal of Heredity. 75 (2): 141–142. doi:10.1093/oxfordjournals.jhered.a109889.
  21. 1 2 3 Cluster, P.D.; Allard, R.W. (1995). "Evolution of ribosomal DNA (rDNA) genetic structure in colonial Californian populations of Avena barbata". Genetics. 139 (2): 941–954. doi:10.1093/genetics/139.2.941. PMC   1206392 . PMID   7713443.
  22. Latta, RG; Gardner, KM; Staples, DA (2010). "Quantitative trait locus mapping of genes under selection across multiple years and sites in Avena barbata: epistasis, pleiotropy, and genotype-by-environment interactions". Genetics. 185 (1): 375–85. doi:10.1534/genetics.110.114389. PMC   2870971 . PMID   20194964.
  23. Latta, RG (2009). "Testing for local adaptation in Avena barbata: a classic example of ecotypic divergence" (PDF). Molecular Ecology. 18 (18): 3781–91. Bibcode:2009MolEc..18.3781L. doi:10.1111/j.1365-294X.2009.04302.x. PMID   19674308. S2CID   37571921. Archived from the original (PDF) on 1 April 2011.
  24. Allard, Robert W. (1999). "History of Plant Population Genetics". Annual Review of Genetics. 33: 1–27. doi:10.1146/annurev.genet.33.1.1. PMID   10690402.
  25. Sherrard, Mark E.; Maherali, Hafiz (2006). "The adaptive significance of drought escape in Avena barbata, an annual grass". Evolution. 60 (12): 2478–2489. doi:10.1554/06-150.1 (inactive 2024-04-25). PMID   17263110. S2CID   23508155.{{cite journal}}: CS1 maint: DOI inactive as of April 2024 (link)
  26. Latta, R.G. (2009). "Testing for local adaptation in Avena barbata: a classic example of ecotypic divergence". Molecular Ecology. 18 (18): 3781–3791. Bibcode:2009MolEc..18.3781L. doi:10.1111/j.1365-294x.2009.04302.x. PMID   19674308. S2CID   37571921.
  27. Kahler, A.L.; Allard, R.W.; Krzakowa, M.; Nevo, E. (1980). "Associations between isozyme phenotypes and environment in the slender wild oat (Avena barbata) in Israel". Theor. Appl. Genet. 56 (1–2): 31–47. doi:10.1007/bf00264424. PMID   24305669. S2CID   11926218.
  28. Garcia, P.; Morris, M.I.; Sàenz-de-Miera, L.E.; Allard, R.W.; Pèrez de la Vega, M.; Ladinsky, G. (1991). "Genetic diversity and adaptedness in tetraploid Avena barbata and its diploid ancestors Avena hirtula and Avena wiestii". Proc. Natl. Acad. Sci. 88 (4): 1207–1211. Bibcode:1991PNAS...88.1207G. doi: 10.1073/pnas.88.4.1207 . PMC   50986 . PMID   1996323.
  29. Allard, R.W.; Garcia, P.; Sàenz-de-Miera, L.E.; Pèrez de la Vega, M. (1993). "Evolution of multilocus genetic structure in Avena hirtula and Avena barbata". Genetics. 135 (4): 1125–1139. doi:10.1093/genetics/135.4.1125. PMC   1205744 . PMID   8307328.
  30. Benchacho, M.R.; Guma, R.; Pèrez de la Vega, M. (2002). "The genetic structure of tetraploid Avena: a comparison of isozyme and RAPD markers". Cell. Mol. Biol. Lett. 7 (2A): 465–469. PMID   12378251.