Carburetor heat

Last updated

Carburetor heat (usually abbreviated to 'carb heat') is a system used in automobile and piston-powered light aircraft engines to prevent or clear carburetor icing. It consists of a moveable flap which draws hot air into the engine intake. The air is drawn from the heat stove, a metal plate around the (very hot) exhaust manifold.

Contents

Operation

Carburetor icing conditions Carburetor icing conditions.png
Carburetor icing conditions

Carburetor icing is caused by the temperature drop in the carburetor, as an effect of fuel vaporization, and the temperature drop associated with the pressure drop in the venturi. If the temperature drops below freezing, water vapor will freeze onto the throttle valve, and other internal surfaces of the carburetor. The venturi effect can reduce the air temperature by 39 K; 39 °C (70 °F). In other words, air at an outside temperature of 38 °C (100 °F), can drop to −1 °C (30 °F) in the carburetor. Carburetor icing most often occurs when the outside air temperature is below 21 °C (70 °F) and the relative humidity is above 80 percent. [1]

Carburetor heat uses hot air drawn from the heat exchanger or heat stove (a metal plate around the exhaust manifold) to raise the temperature in the venturi section high enough to prevent or remove any ice build-up. Because hot air is less dense than cold air, engine power will drop when carburetor heat is used.

Engines equipped with fuel injection do not require carb heat as they are not as prone to icing - the gasoline is injected as a steady stream just upstream of the intake valve, so evaporation occurs as the fuel/air mixture is being drawn into the cylinder, where metal temperatures are higher. The exception is mono-point or TBI injection systems which spray fuel onto the throttle plate.

Some multipoint injection engines route engine coolant through the throttle body to prevent ice build-up during prolonged idling. This prevents ice from forming around the throttle plate but does not draw large amounts of hot air into the engine as carburetor heat does.

In aircraft

Carburetor components.png
Carburetor Icing diagram.png
Aircraft float-type carburetor under normal conditions (left), and under carburetor icing conditions (right). [1]

A fixed-pitch propeller aircraft will show a decrease in engine RPM, and perhaps run rough, when carburetor ice has formed. However, a constant-speed propeller aircraft will show a decrease in manifold pressure as power is reduced. [1]

In light aircraft, the carburetor heat is usually manually controlled by the pilot. The diversion of warm air into the intake reduces the available power from the engine for three reasons: thermodynamic efficiency is slightly reduced, since it is a function of the difference in temperature between the incoming and exhaust gases; the quantity of air available for combustion inside the cylinders is reduced due to the lower density of the warm air; and the previously-correct ratio of fuel to air is upset by the lower-density air, so some of the fuel will not be burned and will exit as unburned hydrocarbons.

Thus the application of carb heat is manifested as a reduction in engine power, up to 15 percent. If ice has built up, there will then be a gradual increase in power as the air passage is freed up by the melting ice. The amount of power regained is an indication of the severity of ice build-up. [1]

It must be kept in mind that the ingestion of small amounts of water into the engine following melting in the carburetor may cause an initial period of rough running for as much as one or two minutes before the power increase is noted. Again, the pilot will note this as evidence that icing conditions are present. However, more than one pilot,[ by whom? ] when confronted with a rough running engine has mistakenly turned the carburetor heat back off, thereby exacerbating the situation.

Applying carb heat as a matter of routine is built into numerous in-flight and pre-landing checks (e.g. see BUMPH and GUMPS). In long descents, carb heat may be used continuously to prevent icing build-up; with the throttle closed there is a large pressure (and therefore temperature) drop in the carburetor which can cause rapid ice buildup that could go unnoticed because engine power is not used. In addition, the exhaust manifold cools considerably when power is removed, so if carb icing occurs there may not be heat sufficient to remove it. Thus most operational checklists call for the routine application of carb heat whenever the throttle is closed in flight.

Usually, the air filter is bypassed when carb heat is used. If the air filter becomes clogged (with snow, ice, or dust debris), using carb heat allows the engine to keep running. Because using unfiltered air can cause engine wear, carb heat usage on the ground (where dusty air is most probable) is kept to a minimum.

Altitude has an indirect effect on carburetor ice because there are usually significant temperature differences with altitude. Clouds contain moisture, and therefore flying through clouds may necessitate more frequent use of carb heat.

In automobiles

In cars, carburetor heat may be controlled automatically (e.g. by a wax-pellet driven flap in the air intake) or manually (often by rotating the air cleaner cover between 'summer' and 'winter' settings), with use both of "heat stove" type systems, and electric-filament booster elements directly attached to the carb or TBI module. The air filter bypass found on aircraft engines is not used, because the air filter on automobiles is not normally exposed to the elements (and an automobile drives around at ground level, and has to share dusty, grimy roads with other cars, so it is much more prone to ingesting dust and grit when running without a filter than an aircraft is) - at least, not so much to allow an obstructive build-up of snow and/or ice upon it - and because it is usually mounted closer to the cylinder block, such that it is able to absorb enough engine heat to keep itself from freezing up (airflow through the generally large-aperture filter is slower than through the throttle body itself, and thus less influenced by cooling effects). However, this is not always sufficient, and some automobiles have a history of temporary engine failure during rain or snow conditions (power output drops below that sufficient to continue propelling the vehicle, or even to prevent stalling whilst unladen, and the car cannot be driven/engine restarted until it has stood awhile without a mass quantity of cold, wet air travelling through it, so that the residual engine heat can melt the accumulated ice).

Automobile engines may also use a heat riser, which heats the air/fuel mixture after it has left the carburetor; this is a low temperature fuel economy and driveability feature with most benefits seen at low rpms.

Motorcycle engines may also use carburetor heating. In many cases, and especially with simple air-cooled engines, this relies solely upon an electric heating element attached to the carburetor, as a heat stove and attached warm air feed would be bulky, complex, difficult to route, and may even interfere with normal cooling of the cylinder block. On a few of their air cooled motorcycles, Ducati have utilized an oil line to warm the base of the carb which is operated by the rider via a small valve.

See also

Related Research Articles

<span class="mw-page-title-main">Carburetor</span> Component of internal combustion engines which mixes air and fuel in a controlled ratio

A carburetor is a device used by a gasoline internal combustion engine to control and mix air and fuel entering the engine. The primary method of adding fuel to the intake air is through the Venturi tube in the main metering circuit, though various other components are also used to provide extra fuel or air in specific circumstances.

<span class="mw-page-title-main">Exhaust gas recirculation</span> NOx reduction technique used in gasoline and diesel engines

In internal combustion engines, exhaust gas recirculation (EGR) is a nitrogen oxide (NOx) emissions reduction technique used in petrol/gasoline, diesel engines and some hydrogen engines. EGR works by recirculating a portion of an engine's exhaust gas back to the engine cylinders. The exhaust gas displaces atmospheric air and reduces O2 in the combustion chamber. Reducing the amount of oxygen reduces the amount of fuel that can burn in the cylinder thereby reducing peak in-cylinder temperatures. The actual amount of recirculated exhaust gas varies with the engine operating parameters.

<span class="mw-page-title-main">Engine tuning</span> Optimisation of engine performance

Engine tuning is the adjustment or modification of the internal combustion engine or Engine Control Unit (ECU) to yield optimal performance and increase the engine's power output, economy, or durability. These goals may be mutually exclusive; an engine may be de-tuned with respect to output power in exchange for better economy or longer engine life due to lessened stress on engine components.

<span class="mw-page-title-main">Aircraft engine controls</span>

Aircraft engine controls provide a means for the pilot to control and monitor the operation of the aircraft's powerplant. This article describes controls used with a basic internal-combustion engine driving a propeller. Some optional or more advanced configurations are described at the end of the article. Jet turbine engines use different operating principles and have their own sets of controls and sensors.

<span class="mw-page-title-main">Naturally aspirated engine</span> Type of internal combustion engine

A naturally aspirated engine, also known as a normally aspirated engine, and abbreviated to N/A or NA, is an internal combustion engine in which air intake depends solely on atmospheric pressure and does not have forced induction through a turbocharger or a supercharger.

<span class="mw-page-title-main">Chrysler LA engine</span> Reciprocating internal combustion engine

The LA engines are a family of pushrod OHV small block 90° V-configured gasoline engines built by Chrysler Corporation. They were factory-installed in passenger vehicles, trucks and vans, commercial vehicles, marine and industrial applications from 1964 through 1991 (318) & 1992 (360). Their combustion chambers are wedge-shaped, rather than polyspherical, as in the predecessor A engine, or hemispherical in the Hemi. LA engines have the same 4.46 in (113 mm) bore spacing as the A engines.

<span class="mw-page-title-main">Inlet manifold</span> Automotive technology

In automotive engineering, an inlet manifold or intake manifold is the part of an engine that supplies the fuel/air mixture to the cylinders. The word manifold comes from the Old English word manigfeald and refers to the multiplying of one (pipe) into many.

Manifold vacuum, or engine vacuum in an internal combustion engine is the difference in air pressure between the engine's intake manifold and Earth's atmosphere.

<span class="mw-page-title-main">Ram-air intake</span> An intake design which uses air pressure from vehicle motion to increase static air pressure

A ram-air intake is any intake design which uses the dynamic air pressure created by vehicle motion, or ram pressure, to increase the static air pressure inside of the intake manifold on an internal combustion engine, thus allowing a greater massflow through the engine and hence increasing engine power.

<span class="mw-page-title-main">Carburetor icing</span>

Carburetor icing is an icing condition which can affect carburetors under certain atmospheric conditions. The problem is most notable in aviation engines using float-type carburetors.

Secondary air injection is a vehicle emissions control strategy introduced in 1966, wherein fresh air is injected into the exhaust stream to allow for a fuller secondary combustion of exhaust gases.

A throttle is the mechanism by which fluid flow is managed by constriction or obstruction.

The Quadrajet is a four barrel carburetor, made by the Rochester Products Division of General Motors. Its first application was the new-for-1965 Chevy 396ci engine. Its last application was on the 1990 Oldsmobile 307 V8 engine, which was last used in the Cadillac Brougham and full size station wagons made by Chevrolet, Pontiac, Oldsmobile, and Buick.

<span class="mw-page-title-main">Supercharger</span> Air compressor for an internal combustion engine

In an internal combustion engine, a supercharger compresses the intake gas, forcing more air into the engine in order to produce more power for a given displacement.

The following outline is provided as an overview of and topical guide to automobiles:

A pressure carburetor is a type of fuel metering system manufactured by the Bendix Corporation for piston aircraft engines, starting in the 1940s. It is recognized as an early type of throttle-body fuel injection and was developed to prevent fuel starvation during inverted flight.

Internal combustion engines come in a wide variety of types, but have certain family resemblances, and thus share many common types of components.

<span class="mw-page-title-main">Bendix-Stromberg pressure carburetor</span>

Of the three types of carburetors used on large, high-performance aircraft engines manufactured in the United States during World War II, the Bendix-Stromberg pressure carburetor was the one most commonly found. The other two carburetor types were manufactured by Chandler Groves and Chandler Evans Control Systems (CECO). Both of these types of carburetors had a relatively large number of internal parts, and in the case of the Holley Carburetor, there were complications in its "variable venturi" design.

<span class="mw-page-title-main">Internal combustion engine</span> Engine in which the combustion of a fuel occurs with an oxidizer in a combustion chamber

An internal combustion engine is a heat engine in which the combustion of a fuel occurs with an oxidizer in a combustion chamber that is an integral part of the working fluid flow circuit. In an internal combustion engine, the expansion of the high-temperature and high-pressure gases produced by combustion applies direct force to some component of the engine. The force is typically applied to pistons, turbine blades, a rotor, or a nozzle. This force moves the component over a distance, transforming chemical energy into kinetic energy which is used to propel, move or power whatever the engine is attached to.

References

  1. 1 2 3 4 5 "Chapter 7: Aircraft Systems". Pilot's Handbook of Aeronautical Knowledge, FAA-H-8083-25B (PDF). US Dept. of Transportation, FAA. 2016. pp. 7-8–7-10. Archived from the original (PDF) on 2022-12-06. Retrieved 2023-02-26. Carburetor heat is an anti-icing system that preheats the air before it reaches the carburetor and is intended to keep the fuel-air mixture above freezing to prevent the formation of carburetor ice.