Valve timing

Last updated

In a piston engine, the valve timing is the precise timing of the opening and closing of the valves. In an internal combustion engine those are usually poppet valves and in a steam engine they are usually slide valves or piston valves.

Contents

Internal combustion engines

Camshaft

In four-stroke cycle engines and some two-stroke cycle engines, the valve timing is controlled by the camshaft. It can be varied by modifying the camshaft, or it can be varied during engine operation by variable valve timing. It is also affected by the adjustment of the valve mechanism, and particularly by the tappet clearance. However, this variation is normally unwanted.

Valve overlap

Valve timing diagram for a 4-stroke engine Valve timing 4T.png
Valve timing diagram for a 4-stroke engine

With traditional fixed valve timing, an engine will have a period of "valve overlap" at the end of the exhaust stroke, when both the intake and exhaust valves are open. The intake valve is opened before the exhaust gases have completely left the cylinder, and their considerable velocity assists in drawing in the fresh charge. Engine designers aim to close the exhaust valve just as the fresh charge from the intake valve reaches it, to prevent either loss of fresh charge or unscavenged exhaust gas. In the diagram, the valve overlap periods are indicated by the overlap of the red and blue arcs.

Key:

Either valve opens before the piston head reaches top dead centre or bottom dead centre. The amount in crankshaft degrees by which the valves open before top dead centre or bottom dead centre is reached is known as valve lead. The amount in crankshaft by which the valves close after top dead centre or bottom dead centre is reached is known as valve lag. Valve overlap is a secondary means to cool exhaust valves with intake air during valve overlap. Primary cooling is accomplished by dissipating heat to the valve seats. [1]

Variable valve timing

Engines that always run at a relatively high speed, such as race car engines, will have considerable overlap in their valve timings for maximum volumetric efficiency. Road car engines are different because they are required to idle at less than 1000rpm, and excessive valve overlap would make smooth idling impossible because of the mixing of fresh and exhaust gases. Variable valve timing can give both maximum power at high rpm and smooth idling at low rpm by making small changes to the relative angular position of the camshafts and thereby varying the valve overlap.

Ported engines

Two-Stroke engine showing ports in the cylinder walls. The timing cannot be varied. Two-Stroke Engine.gif
Two-Stroke engine showing ports in the cylinder walls. The timing cannot be varied.

Many two-stroke cycle and all wankel engines do not have a camshaft or valves, and the port timing can only be varied by machining the ports, and/or modifying the piston skirt (two-stroke applications). However, some supercharged two-stroke diesel engines (such as the Wilksch aero-engine) do have a cylinder head and poppet valves, similar to a four-stroke cycle engine.

Tappet clearance

The valve timing of a diesel engine also depends on tappet clearance of the inlet and exhaust valves.

If tappet clearance is less, then valve will open early and close late. [2] If tappet clearance is more, then valve will open late and close early. Tappet clearance is measured by an instrument called feeler gauge.

External combustion engines

In an external combustion engine, such as a steam engine, the control of the valve timing is by the valve gear. In a typical piston valve arrangement, the timing of the intake and exhaust events for each cylinder are inextricably related as they are governed by the movement of a single piston uncovering two ports. However, the duration of the intake event can be controlled (the "cut-off") using the reversing gear and this reduces steam usage under cruising conditions.

Caprotti valve gear is more closely related to that of an internal combustion engine, uses poppet valves, and was developed to allow independent timing of the intake and exhaust events. It was never used as widely as piston valves or the earlier slide valves.

See also

Related Research Articles

<span class="mw-page-title-main">Two-stroke engine</span> Internal combustion engine type

A two-strokeengine is a type of internal combustion engine that completes a power cycle with two strokes of the piston during one power cycle, this power cycle being completed in one revolution of the crankshaft. A four-stroke engine requires four strokes of the piston to complete a power cycle during two crankshaft revolutions. In a two-stroke engine, the end of the combustion stroke and the beginning of the compression stroke happen simultaneously, with the intake and exhaust functions occurring at the same time.

<span class="mw-page-title-main">Sleeve valve</span> Valve mechanism for piston engines

The sleeve valve is a type of valve mechanism for piston engines, distinct from the usual poppet valve. Sleeve valve engines saw use in a number of pre–World War II luxury cars and in the United States in the Willys-Knight car and light truck. They subsequently fell from use due to advances in poppet-valve technology, including sodium cooling, and the Knight system double sleeve engine's tendency to burn a lot of lubricating oil or to seize due to lack of it. The Scottish Argyll company used its own, much simpler and more efficient, single sleeve system (Burt-McCollum) in its cars, a system which, after extensive development, saw substantial use in British aircraft engines of the 1940s, such as the Napier Sabre, Bristol Hercules, Centaurus, and the promising but never mass-produced Rolls-Royce Crecy, only to be supplanted by the jet engines.

<span class="mw-page-title-main">Poppet valve</span> Type of valve

A poppet valve is a valve typically used to control the timing and quantity of gas or vapor flow into or out of an engine, but with many other applications.

<span class="mw-page-title-main">Camshaft</span> Mechanical component that converts rotational motion to reciprocal motion

A camshaft is a shaft that contains a row of pointed cams, in order to convert rotational motion to reciprocating motion. Camshafts are used in piston engines, mechanically controlled ignition systems and early electric motor speed controllers.

<span class="mw-page-title-main">Four-stroke engine</span> Internal combustion engine type

A four-strokeengine is an internal combustion (IC) engine in which the piston completes four separate strokes while turning the crankshaft. A stroke refers to the full travel of the piston along the cylinder, in either direction. The four separate strokes are termed:

  1. Intake: Also known as induction or suction. This stroke of the piston begins at top dead center (T.D.C.) and ends at bottom dead center (B.D.C.). In this stroke the intake valve must be in the open position while the piston pulls an air-fuel mixture into the cylinder by producing a partial vacuum in the cylinder through its downward motion.
  2. Compression: This stroke begins at B.D.C, or just at the end of the suction stroke, and ends at T.D.C. In this stroke the piston compresses the air-fuel mixture in preparation for ignition during the power stroke (below). Both the intake and exhaust valves are closed during this stage.
  3. Combustion: Also known as power or ignition. This is the start of the second revolution of the four stroke cycle. At this point the crankshaft has completed a full 360 degree revolution. While the piston is at T.D.C. the compressed air-fuel mixture is ignited by a spark plug or by heat generated by high compression, forcefully returning the piston to B.D.C. This stroke produces mechanical work from the engine to turn the crankshaft.
  4. Exhaust: Also known as outlet. During the exhaust stroke, the piston, once again, returns from B.D.C. to T.D.C. while the exhaust valve is open. This action expels the spent air-fuel mixture through the exhaust port.
<span class="mw-page-title-main">Valve gear</span> Mechanism for controlling steam flow in a reciprocating steam engine.

The valve gear of a steam engine is the mechanism that operates the inlet and exhaust valves to admit steam into the cylinder and allow exhaust steam to escape, respectively, at the correct points in the cycle. It can also serve as a reversing gear. It is sometimes referred to as the "motion".

<span class="mw-page-title-main">Variable valve timing</span> Process of altering the timing of a valve lift event

Variable valve timing (VVT) is the process of altering the timing of a valve lift event in an internal combustion engine, and is often used to improve performance, fuel economy or emissions. It is increasingly being used in combination with variable valve lift systems. There are many ways in which this can be achieved, ranging from mechanical devices to electro-hydraulic and camless systems. Increasingly strict emissions regulations are causing many automotive manufacturers to use VVT systems.

The Hyundai Beta engines are 1.6 L to 2.0 L I4 built in Ulsan, South Korea.

<span class="mw-page-title-main">Alfa Romeo Twin Spark engine</span> Reciprocating internal combustion engine

Alfa Romeo Twin Spark (TS) technology was used for the first time in the Alfa Romeo Grand Prix car in 1914. In the early 1960s it was used in their race cars (GTA, TZ) to enable it to achieve a higher power output from its engines. And in the early and middle 1980s, Alfa Romeo incorporated this technology into their road cars to enhance their performance and to comply with stricter emission controls.

<span class="mw-page-title-main">Tappet</span> Internal combustion engine part

A tappet is a valve train component which converts rotating motion into linear motion in activating a valve. It is most commonly found in internal combustion engines, which converts the rotating motion of the camshaft into linear motion of intake and exhaust valves, either directly or indirectly.

<span class="mw-page-title-main">Valvetrain</span> Mechanical system in an internal combustion engine

A valvetrain or valve train is a mechanical system that controls the operation of the intake and exhaust valves in an internal combustion engine. The intake valves control the flow of air/fuel mixture into the combustion chamber, while the exhaust valves control the flow of spent exhaust gasses out of the combustion chamber once combustion is completed.

<span class="mw-page-title-main">Scavenging (engine)</span> Process used in internal combustion engines

Scavenging is the process of replacing the exhaust gas in a cylinder of an internal combustion engine with the fresh air/fuel mixture for the next cycle. If scavenging is incomplete, the remaining exhaust gases can cause improper combustion for the next cycle, leading to reduced power output.

<span class="mw-page-title-main">Uniflow steam engine</span> Type of steam engine

The uniflow type of steam engine uses steam that flows in one direction only in each half of the cylinder. Thermal efficiency is increased by having a temperature gradient along the cylinder. Steam always enters at the hot ends of the cylinder and exhausts through ports at the cooler centre. By this means, the relative heating and cooling of the cylinder walls is reduced.

<span class="mw-page-title-main">Piston valve (steam engine)</span> Form of valve within a steam engine or locomotive

Piston valves are one form of valve used to control the flow of steam within a steam engine or locomotive. They control the admission of steam into the cylinders and its subsequent exhausting, enabling a locomotive to move under its own power. The valve consists of two piston heads on a common spindle moving inside a steam chest, which is essentially a mini-cylinder located either above or below the main cylinders of the locomotive.

<span class="mw-page-title-main">Panther Model 75</span> Motorcycle

The Model 75Panther motorcycle had a 348cc, 6.5:1 compression ratio, 71 x 88 mm, ohv vertical engine in a relatively standard frame. It was developed from the 1948 Model 70. In many respects it was similar to the 248cc Model 65. The Model 75 had Lucas K1F magneto ignition. The gearbox was Burman CP four speed unit with a ratio of 5.25:1. The frame was a heavy duty cradle with a single saddle down tube. A swinging arm model was introduced in 1953. The Dowty forks that initially provided front suspension were later replaced with the P&M telescopic forks. Wheels were 26" x 3.25" front and rear initially with 6" half width hubs and later optional alloy hubs were offered.

A bash valve is a valve within a piston engine, used to control the admission of the working fluid. They are directly actuated valves, operated by contact between the piston and the valve tip.

<span class="mw-page-title-main">Internal combustion engine</span> Engine in which the combustion of a fuel occurs with an oxidizer in a combustion chamber

An internal combustion engine is a heat engine in which the combustion of a fuel occurs with an oxidizer in a combustion chamber that is an integral part of the working fluid flow circuit. In an internal combustion engine, the expansion of the high-temperature and high-pressure gases produced by combustion applies direct force to some component of the engine. The force is typically applied to pistons, turbine blades, a rotor, or a nozzle. This force moves the component over a distance, transforming chemical energy into kinetic energy which is used to propel, move or power whatever the engine is attached to.

<span class="mw-page-title-main">4 VD 14,5/12-1 SRW</span> Reciprocating internal combustion engine

The 4 VD 14,5/12-1 SRW is an inline four-cylinder diesel engine produced by the VEB IFA Motorenwerke Nordhausen from 1967 to 1990. The engine was one of the standard modular engines for agricultural and industrial use in the Comecon-countries. Approximately one million units were made.

<span class="mw-page-title-main">De Dion-Bouton 130 hp</span> 1910s French piston aircraft engine

The De Dion-Bouton 130 hp aircraft engine, also referred to as De Dion-Bouton 12B, was a twelve-cylinder, air cooled vee aircraft engine that has been built by De Dion-Bouton.

References

  1. Bennett, Sean (February 2012). Medium/Heavy Duty Truck Engines, Fuel & Computerized Management Systems (4th ed.). Cengage Learning. ISBN   978-1111645694.
  2. "What is Tappet Clearance ? How to check and Adjust Tappet Clearance ?".