This article has multiple issues. Please help improve it or discuss these issues on the talk page . (Learn how and when to remove these messages)
|
A hydraulic tappet, also known as a hydraulic valve lifter or hydraulic lash adjuster, is a device for maintaining zero valve clearance in an internal combustion engine. Conventional solid valve lifters require regular adjusting to maintain a small clearance between the valve and its rocker or cam follower. This space prevents the parts from binding as they expand with the engine's heat, but can also lead to noisy operation and increased wear as the parts rattle against one another until they reach operating temperature. The hydraulic lifter was designed to compensate for this small tolerance, allowing the valve train to operate with zero clearance—leading to quieter operation, longer engine life, and eliminating the need for periodic adjustment of valve clearance.
The hydraulic lifter, situated between the camshaft and each engine's valve, is a hollow steel cylinder encasing an internal piston. This piston is held at the outer limit of its travel with a strong spring. The lobed camshaft rhythmically presses against the lifter, which transmits the motion to the engine valve in one of two ways:
Oil under constant pressure is supplied to the lifter via an oil channel, through a small hole in the lifter body. When the engine valve is closed (lifter in a neutral position), the lifter is free to fill with oil. As the camshaft lobe enters the lift phase of its travel, it compresses the lifter piston, and a valve shuts the oil inlet. Oil is nearly incompressible, so this greater pressure renders the lifter effectively solid during the lift phase.
As the camshaft lobe travels through its apex, the load is reduced on the lifter piston, and the internal spring returns the piston to its neutral state so the lifter can refill with oil. This small range of travel in the lifter's piston is enough to eliminate the need for frequent lash adjustment.
The first engine to feature hydraulic lifters was the 1930 Cadillac V16 (Model 452). Hydraulic lifters were nearly universal on cars designed in the 1980s, but some newer cars have reverted to bucket-and-shim mechanical lifters. Although these do not run as quietly and are not maintenance-free, they are cheaper.[ citation needed ] Nearly all modern non-hydraulic lifter arrangements are on overhead cam engines.[ citation needed ]
As the whole process is actuated by hydraulic pressure at engine start, there is no need for service or adjustment. Another advantage is cheaper operation, as there is no need for service and charges associated with tappet maintenance. Usually hydraulic tappets survive through the whole of the engine life without any service requirements.
There are a number of potential problems with hydraulic lifters. Frequently, the valvetrain will rattle loudly on startup due to oil draining from the lifters when the vehicle is parked. This is not considered a significant issue provided the noise disappears within a couple of minutes; typically it usually lasts only a second or two. A rattle that does not go away can indicate a blocked oil feed, or that one or more of the lifters has collapsed due to wear and is no longer opening its valve fully. The affected lifter should be replaced in the latter situation.
Hydraulic tappets require more complex and more expensive cylinder head design. A number of subcompact car manufacturers prefer solid valve lifters due to lower design and production cost rather than hydraulic tappets.
Generally, hydraulic tappets are more sensitive to engine oil quality and frequency of oil changes, as carbon sludge and residues may easily lock up the tappets or block oil channels, making the clearance setting ineffective. This has negative impact, especially on the engine camshaft and valves due to excessive wear if the clearance setting is not working correctly. As mentioned, one may avoid this by using the manufacturer-recommended grade of engine oil, and by not exceeding the prescribed oil change interval.
It is a myth that in certain circumstances, a lifter can "pump up" and create negative valve clearance. The engine oil pump cannot generate enough pressure to cause "pump-up". The problem is due to weak valve springs which permit float at high engine speeds. The followers attempt to take up what they see as extra clearance. As this speed is maintained, the lifter will continue to expand until the valve is held off its seat when it should be closed. Maintenance of the valve springs at the correct strength is therefore very important to avoid engine damage.
Hydraulic lifters can also create "valve bounce" at high RPM, which is undesirable for performance uses.
Used hydraulic lifters should be drained of oil before installation, to prevent them from holding open the valves on startup and potentially causing damage to the valve-train/pistons. This is easily accomplished by compressing them in a vise. Oil pressure will build quickly upon startup and they will set themselves to the proper height.
A camshaft is a shaft that contains a row of pointed cams in order to convert rotational motion to reciprocating motion. Camshafts are used in piston engines, mechanically controlled ignition systems and early electric motor speed controllers.
A desmodromic valve is a reciprocating engine poppet valve that is positively closed by a cam and leverage system, rather than by a more conventional spring.
The Ford CVH engine is a straight-four automobile engine produced by the Ford Motor Company. The engine's name is an acronym for either Compound Valve-angle Hemispherical or Canted Valve Hemispherical, where "Hemispherical" describes the shape of the combustion chamber. The CVH was introduced in 1980 in the third generation European Escort and in 1981 in the first generation North American Escort.
In a piston engine, either a timing belt or timing chain or set of timing gears is a perishable component used to synchronize the rotation of the crankshaft and the camshaft. This synchronisation ensures that the engine's valves open and close at the correct times in relation to the position of the pistons.
Variable valve timing (VVT) is the process of altering the timing of a valve lift event in an internal combustion engine, and is often used to improve performance, fuel economy or emissions. It is increasingly being used in combination with variable valve lift systems. There are many ways in which this can be achieved, ranging from mechanical devices to electro-hydraulic and camless systems. Increasingly strict emissions regulations are causing many automotive manufacturers to use VVT systems.
VVT-i, or Variable Valve Timing with intelligence, is an automobile variable valve timing petrol engine technology manufactured by Toyota Group and used by brands Groupe PSA, Toyota, Lexus, Scion, Daihatsu, Subaru, Aston Martin, Pontiac and Lotus Cars. It was introduced in 1995 with the 2JZ-GE engine found in the JZS155 Toyota Crown and Crown Majesta.
The LA engine is a family of overhead-valve small-block 90° V-configured gasoline engines built by Chrysler Corporation between 1964 and 2003. A replacement of the Chrysler A engine, they were factory-installed in passenger vehicles, trucks and vans, commercial vehicles, marine and industrial applications. Their combustion chambers are wedge-shaped, rather than polyspheric, as in the A engine, or hemispheric in the Chrysler Hemi. LA engines have the same 4.46 in (113 mm) bore spacing as the A engines.
An overhead valve engine, abbreviated (OHV) and sometimes called a pushrod engine, is a piston engine whose valves are located in the cylinder head above the combustion chamber. This contrasts with flathead engines, where the valves were located below the combustion chamber in the engine block.
The Hyundai Beta engines are 1.6 L to 2.0 L I4 built in Ulsan, South Korea.
A tappet or valve lifter is a valve train component which converts rotational motion into linear motion in activating a valve. It is most commonly found in internal combustion engines, where it converts the rotational motion of the camshaft into linear motion of intake and exhaust valves, either directly or indirectly.
A camless or free-valve piston engine is an engine that has poppet valves operated by means of electromagnetic, hydraulic, or pneumatic actuators instead of conventional cams. Actuators can be used to both open and close valves, or to open valves closed by springs or other means.
A rocker arm is a valvetrain component that typically transfers the motion of a pushrod in an overhead valve internal combustion engine to the corresponding intake/exhaust valve.
The Rolls-Royce Phantom III was the final large pre-war Rolls-Royce. Introduced in 1936, it replaced the Phantom II and it was the only V12 Rolls-Royce until the 1998 introduction of the Silver Seraph. It is the first of the three V12-powered Rolls-Royce Phantoms, with the 2003-2017 Rolls-Royce Phantom VII and 2018- Rolls-Royce Phantom VIII being the other two. 727 V12 Phantom III chassis were constructed from 1936 to 1939, and approximately 650 have survived. Although chassis production ceased in 1939, cars were still being bodied and delivered in 1940 and 1941. The last car, though the rolling chassis was completed in 1941, was not delivered with a body to its owner until 1947. The Phantom III was the last car that Henry Royce worked on – he died, aged 70, a year into the Phantom III's development.
A valvetrain is a mechanical system that controls the operation of the intake and exhaust valves in an internal combustion engine. The intake valves control the flow of air/fuel mixture into the combustion chamber, while the exhaust valves control the flow of spent exhaust gases out of the combustion chamber once combustion is completed.
Pneumatic valve springs are metal bellows filled with compressed air used as an alternative to the metal wire springs used to close valves in high-speed internal combustion engines. This system was introduced in Formula One in 1986 with the Renault EF-Type.
The oil pump is an internal combustion engine part that circulates engine oil under pressure to the rotating bearings, the sliding pistons and the camshaft of the engine. This lubricates the bearings, allows the use of higher-capacity fluid bearings and also assists in cooling the engine.
MultiAir or Multiair is a hydraulically-actuated variable valve timing (VVT) and variable valve lift (VVL) engine technology enabling "cylinder by cylinder, stroke by stroke" control of intake air directly via a gasoline engine's inlet valves. Developed by Fiat Powertrain Technologies, the technology addresses a primary engine inefficiency: pumping losses caused by restricting intake passage by the throttle plate that regulates air feeding the cylinders.
Variable valve lift (VVL) is an automotive piston engine technology which varies the height a valve opens in order to improve performance, fuel economy or emissions. There are two main types of VVL: discrete, which employs fixed valve lift amounts, and continuous, which is able to vary the amount of lift. Continuous valve lift systems typically allow for the elimination of the throttle valve.