This article may require cleanup to meet Wikipedia's quality standards. The specific problem is: unsourced statements, too many external links on main article body.(May 2022) |
The Centennial Challenges are NASA space competition inducement prize contests for non-government-funded technological achievements by American teams.
NASA's Centennial Challenge Program (CCP) directly engages the public at large in the process of advanced technology development that is of value to NASA's missions and to the aerospace community. CCP offers challenges set up as competitions that award prize money to the individuals or teams to achieve the specified technology challenge. The prize contests are named "Centennial" in honor of the 100 years since the Wright brothers' first flight in 1903. The Wright Brothers' pioneering inventions embody the spirit of the challenges.
The Centennial Challenges are based on a long history of technology prize contests, including the Longitude prize (won by John Harrison), the Orteig Prize (won by Charles Lindbergh), the Ansari X PRIZE (won by Scaled Composites), and the DARPA Grand Challenge (won by Stanford University in 2005 and Carnegie Mellon University in 2007). A key advantage of prizes over traditional grants is that money is only paid when the goal is achieved. A 1999 National Academy of Engineering committee report [1] recommended that "Congress encourage federal agencies to experiment more extensively with inducement prize contests in science and technology". A 2003 NASA Space Architect study, assisted by the X PRIZE Foundation, led to the establishment of the Centennial Challenges.
As a federal agency, NASA has one of the federal government's three largest procurement budgets. The Department of Energy (DOE) and the Defense Department (DOD) round out the trio. With the subsequent proposal in Congress of "H Prize" funding for breakthroughs in hydrogen fuel-related technology, [2] the Department of Energy is poised to join NASA and DARPA's Defense Department in fortifying this paradigm shift favoring a growing quantity of technology experimenters who might otherwise be neglected by traditional government contractors and federal procurement officials.
The Sample Return Robot Challenge [3] is to build an autonomous rough-terrain robot which can find and retrieve geologic samples. The intent is to advance autonomic robotics and remote manipulator technology. The prize is US$1.5 million. [4] The Allied Organization selected to partner with NASA to conduct this challenge is Worcester Polytechnic Institute in Worcester, Massachusetts. Team registration began Summer 2011, and the first competition was held June 16, 2012.
Eleven teams registered for the event, with six showing up to the competition. All but one team were unable to compete after failing the weigh-in and/or inspection. Team SpacePride [5] competed in level one, but did not succeed.
The second running of the challenge took place June 6–8, 2013, at WPI. Ten teams competed for a Level 1 prize. Team Survey of Los Angeles was awarded $5,000 for successfully completing Level 1: their robot left the platform, retrieved a sample and returned to the platform within the 15-minute limit. No teams advanced to Level 2.
The third running of the challenge took place June 9–14, 2014, at WPI. 17 teams competed for Level 1 and Level 2 prizes. [6] Team Mountaineers from West Virginia University (WVU), led by Dr. Yu Gu, successfully completed Level 1 challenge. No teams completed Level 2 challenge in 2014.
The fourth competition took place June 8–12, 2015, at WPI. 16 teams competed for Level 1 and Level 2 prizes. Team Mountaineers [7] from West Virginia University successfully completed Level 2 challenge (with two collected samples or 3 points) and brought home a $100,000 prize. [8] No other team completed Level 1 or Level 2 challenge in 2015.
The fifth year challenge was divided into two events. The Level 1 challenge happened between June 6–11, 2016. Five new teams completed Level 1. The final Level 2 challenge was performed on Sep. 4 & 5. Team Mountaineers from West Virginia University collected 5 samples with a total score of 11 points, and won the challenge with a $750,000 prize. [9]
Efforts were coordinated by NASA and the WPI Robotics Center. [10]
The MAV Prize [11] is a challenge to demonstrate technologies that may be relevant to future NASA Science Mission Directorate Mars missions. The competition will mimic a MAV mission. When NASA eventually returns samples from Mars, there will be a requirement for a special rocket system — the MAV — to launch the samples from Mars’ surface into orbit for rendezvous with a spacecraft that will return them to Earth. The MAV Challenge requires highly reliable and autonomous sample insertion into the rocket, launch from the surface, and deployment of the sample container. Innovative technology from this competition may be considered in future planning for a Mars exploration mission. The first-place award is $25,000; second-place is $15,000; and third-place is $10,000. Competing teams will be eligible for prize money only after the successful completion of all the required tasks.
The inaugural competition was held in April 2015. North Carolina State University of Raleigh won $25,000 for first place; Tarleton State University of Stephenville, Texas, won second, winning $15,000. There was no third-place winner.
The Cube Quest Challenge offers a prize purse of $5 million to teams that meet the challenge objectives of designing, building and delivering flight-qualified, small satellites capable of advanced operations near and beyond the moon. Cube Quest teams will have the opportunity to compete for a secondary payload spot on the first mission of NASA's Orion spacecraft, which will launch atop the agency's Space Launch System (SLS) rocket. The competition includes three stages: Ground Tournaments, Deep Space Derby, and Lunar Derby. The Ground Tournaments will be held every four to six months, leading to an opportunity to earn a spot on the first integrated flight of Orion and SLS. The Deep Space Derby will focus on finding innovative solutions to deep space communications using small spacecraft, and the Lunar Derby will focus primarily on propulsion for small spacecraft and near-Earth communications. [12]
The Green Flight Challenge sponsored by Google is to build an aircraft which can fly 200 miles in under two hours using the energy equivalent of a gallon of gasoline per passenger. The US$1,650,000 prize was competed for Sept 25 - Oct 1, 2011 at the Charles M. Schulz Sonoma County Airport, Santa Rosa, California. The CAFE Foundation [13] was the Allied Organization which partnered with NASA's Centennial Challenges Program [14] to conduct the challenge. On October 1, 2011, CAFE had a competition open house for the public to see the aircraft and meet the competing teams. The Google Green Flight Challenge Exposition [15] was at NASA Ames Research Center in Sunnyvale, California on October 3, 2011. Free admission tickets were available at the Expo website. [16] The Expo had the competition aircraft on display, presented winner checks and additional displays of green energy technology.
This competition presented the challenge of constructing super-strong tethers, a crucial component of a space elevator. [17] The 2005 contest was to award US$50,000 to the team which constructed the strongest tether, with contests in future years requiring that each winner outperform that of the previous year by 50%. No competing tether surpassed the commercial off-the-shelf baseline and the prize was increased to US$200,000 in 2006.
In 2007 the prize money was raised to US$500,000 USD for this competition.[ citation needed ]
The 2011 Strong Tether Centennial Challenge was held at the Space Elevator Conference in Redmond, Washington on August 12, 2011. The Space Elevator Conference, sponsored by Microsoft, The Leeward Space Foundation and The International Space Elevator Consortium has hosted the Tether competition for five years and there has yet to be a winner.
Power Beam competitions were held in 2005, 2006, 2007 and 2009. They were directed at space elevator applications. Teams built mechanical devices (climbers) that could propel themselves up a vertical cable. The power supply for the device was not self-contained but remained on the ground. The technical challenge was to transmit the power to the climber and transform it into mechanical motion, efficiently and reliably.
This was a competition to build a wirelessly-powered ribbon-climbing robot. The contest involves having the robot lift a large payload within a limited timeframe. The first competition in 2005 would have awarded US$50,000, US$20,000, and US$10,000 to the three best-performing teams, meeting the minimum benchmark of 1 m/s. However, no team met this standard, with only two teams climbing under beam power. This prize also increased to US$200,000 in 2006, but no team was able to accomplish the full set of requirements. See Elevator:2010 for more information on Power Beam Challenge as well as other challenges related to space elevator technologies.
In 2007 the prize money was raised to US$500,000 USD for this competition.[ citation needed ]
In the 2009 competition, the competitors drove their laser-powered devices up a cable one kilometer high, suspended from a helicopter. LaserMotive LLC was awarded US$900,000 in the 2009 Power Beaming Challenge. [18]
This head-to-head competition was for a system capable of extracting 2.5 kilograms of oxygen from 100 kilograms of artificial lunar regolith in 4 hours or less using at most 10 kW of power. [19] This US$1 million prize expired in June 2009 without a winner.[ citation needed ]
The initial MoonROx challenge was announced in 2005 with the intent to award a US$250,000 prize to the first team to develop the capability to extract 5 kilograms of breathable oxygen from simulated lunar soil in an eight-hour period. The prize expired in June 2008. [20]
For the initial announcement of the challenge, the competition was to be administered by the Florida Space Research Institute (FSRI) in collaboration with NASA. [20] The next year the California Space Education and Workforce Institute (CSEWI) was selected to administer the challenge when FSRI was dissolved and Space Florida was created to take its place. [21]
Since extracting oxygen from silicates is difficult, and the oxygen electrochemically bound into the silicates at high temperature, it is likely that a solar-furnace may be part of the solution.[ citation needed ]
In the 2007 competition, only the pressure-restraining layer part of the glove was required. But for the 2009 challenge, teams had to provide a complete glove, including the outer, thermal-micrometeoroid-protection layer. This competition rewarded US$200,000 in May 2007 to the team which constructed the best-performing astronaut glove. [22]
The first competition took place May 2 and May 3, 2007, at the New England Air Museum in Windsor Locks, Connecticut. NASA offered a total of US$200,000 for the team that could design and manufacture the best astronaut glove that exceeded minimum requirements. An additional US$50,000 was offered to the team that best demonstrated Mechanical Counter Pressure gloves . The US$200,000 prize was awarded to Peter K. Homer, an engineer from Southwest Harbor, Maine; [23] the US$50,000 prize went unclaimed and rolled to the next competition. [24]
The 2009 competition was held on November 18 and 19 at the Astronaut Hall of Fame in Titusville, Florida. In the 2009 competition Peter K. Homer of Maine won US$250,000 and Ted Southern of New York won US$100,000, both had competed previously. Another challenge is planned and the date is yet to be announced. [25]
Also announced at the XPrize Cup Expo and run by the XPrize Foundation, this prize is for a VTVL (vertical take-off, vertical landing) suborbital rocket that can achieve the altitudes and launch energies that are equivalent to what would be needed for a lunar lander. The Vertical Lander Challenge requires 50 meter minimum altitude, horizontal distance of 100 meters, flight time of 90 seconds, and landing on a smooth surface and after refueling, return to its original location. The more aggressive Lunar Lander Challenge increases that to 180s of flight time and landing on a rocky surface. The VLC has a first prize of $350,000, while the LLC has a first prize in excess of this. For 2006 at the Wirefly X PRIZE Cup, Armadillo Aerospace was the only team able to compete. Their vehicle "Pixel" completed one leg of the trip on its third try but crashed shortly after takeoff on the return, leaving all prizes unclaimed.
In 2008, Armadillo Aerospace successfully completed the easier level one VLC prize. [26]
In 2009, the level two first prize was won by Masten Space Systems, while Armadillo Aerospace took the level two second prize. [27]
In this Challenge, teams designed and built robotic machines to excavate simulated lunar soil (regolith). [28] The Challenge was managed by the California Space Authority [29] and was competed in 2007, 2008, and 2009, at which time the Challenge was won by a team from Worcester Polytechnic Institute, which won the US$500,000 prize purse. [30]
The Night Rover Challenge is to build a solar-powered robot which can operate on stored energy for a significant portion of time. The intent is to spur development of extreme environment battery technology for use in space missions. The prize is US$1.5 million. [4] NASA is partnered with nonprofit organization Clean Tech Open for this challenge . Requirements for proposal submission are here.
As of October 2013, the Night Rover Challenge was closed as no competitors registered.
In October 2012 NASA announced a challenge with the goal of developing some of the key technologies that will make it possible to integrate unmanned aerial vehicles into the National Airspace System. [31] The challenge's focus was on demonstrating a high level of operational robustness and the ability to "sense and avoid" other air traffic. [32]
The challenge was to have been divided into two parts: Phase 1 was scheduled to be held in Spring 2014, and Phase 2 would have taken place one year after Phase 1 was successfully completed. The total prize money available in Phase 1 was US$500,000. Phase 2 was planned to have US$1 million in prize money. [33]
In May 2013, NASA announced that it had selected Development Projects Inc. of Dayton, Ohio to manage the challenge. [34]
As of November 2014, NASA has cancelled the Unmanned Aircraft Systems (UAS) Airspace Operations Challenge (AOC) due to unanticipated technical and operational issues as well as additional costs. NASA Centennial Challenges have historically been high-risk and leveraged activities conducted with minimal government funding. NASA reviewed the intended outcomes of the AOC and determined that the competition was no longer timely or cost-effective to execute as planned. NASA's cancellation of the AOC was not based in any way on technical progress or performance of the registered teams. [35]
The CO2 conversion challenge is a competition to convert carbon dioxide into sugars to be used as feedstock for biomanufacturing in space and on Mars. [36] The competition began in 2018 to incentivize the public to recreate the process plants do regularly, except with a non-biological system. Five teams were each awarded a $50,000 milestone prize in 2019 for Phase 1 of the competition to design a system that could accomplish the chemical transformation, including teams from University of California, Princeton University, Rutgers University, Air Company, and Dioxide Materials. [37] Phase 2 of the competition ended in 2021, and three teams split a $750,000 prize purse. [38]
The challenges have not been finalized. Candidates[ when? ] include:[ citation needed ]
Challenges will be organized into one of four categories: [39]
A space elevator, also referred to as a space bridge, star ladder, and orbital lift, is a proposed type of planet-to-space transportation system, often depicted in science fiction. The main component would be a cable anchored to the surface and extending into space. An Earth-based space elevator would consist of a cable with one end attached to the surface near the equator and the other end attached to a counterweight in space beyond geostationary orbit. The competing forces of gravity, which is stronger at the lower end, and the upward centrifugal force, which is stronger at the upper end, would result in the cable being held up, under tension, and stationary over a single position on Earth. With the tether deployed, climbers (crawlers) could repeatedly climb up and down the tether by mechanical means, releasing their cargo to and from orbit. The design would permit vehicles to travel directly between a planetary surface, such as the Earth's, and orbit, without the use of large rockets.
The Ansari X Prize was a space competition in which the X Prize Foundation offered a US$10,000,000 prize for the first non-government organization to launch a reusable crewed spacecraft into space twice within two weeks. It was modeled after early 20th-century aviation prizes, and aimed to spur development of low-cost spaceflight.
The Vision for Space Exploration (VSE) was a plan for space exploration announced on January 14, 2004 by President George W. Bush. It was conceived as a response to the Space Shuttle Columbia disaster, the state of human spaceflight at NASA, and as a way to regain public enthusiasm for space exploration.
A lunar space elevator or lunar spacelift is a proposed transportation system for moving a mechanical climbing vehicle up and down a ribbon-shaped tethered cable that is set between the surface of the Moon "at the bottom" and a docking port suspended tens of thousands of kilometers above in space at the top.
A lunar lander or Moon lander is a spacecraft designed to land on the surface of the Moon. As of 2024, the Apollo Lunar Module is the only lunar lander to have ever been used in human spaceflight, completing six lunar landings from 1969 to 1972 during the United States' Apollo Program. Several robotic landers have reached the surface, and some have returned samples to Earth.
The NASA Institute for Advanced Concepts (NIAC) is a NASA program for development of far reaching, long term advanced concepts by "creating breakthroughs, radically better or entirely new aerospace concepts". The program operated under the name NASA Institute for Advanced Concepts from 1998 until 2007, and was reestablished in 2011 under the name NASA Innovative Advanced Concepts and continues to the present. The NIAC program funds work on revolutionary aeronautics and space concepts that can dramatically impact how NASA develops and conducts its missions.
Masten Space Systems was an aerospace manufacturer startup company in Mojave, California that was developing a line of vertical takeoff, vertical landing (VTVL) rockets, initially for uncrewed research sub-orbital spaceflights and eventually intended to support robotic orbital spaceflight launches.
The Northrop Grumman Lunar Lander Challenge (NG-LLC) was a competition funded by NASA's Centennial Challenges program. The competition offered a series of prizes for teams that launch a vertical takeoff/vertical landing (VTVL) rocket that achieved the total delta-v needed for a vehicle to move between the surface of the Moon and its orbit. The multi-level competition was conducted by the X PRIZE Foundation, with sponsorship from the Northrop Grumman Corporation who ran the ongoing competition. The prize purses were paid by NASA. It was held annually at the X PRIZE Cup, making its debut at the 2006 Wirefly X PRIZE Cup in October, 2006, until 2009 when the prize purse was awarded to Masten Space Systems and Armadillo Aerospace.
An inducement prize contest (IPC) is a competition that awards a cash prize for the accomplishment of a feat, usually of engineering. IPCs are typically designed to extend the limits of human ability. Some of the most famous IPCs include the Longitude prize (1714–1765), the Orteig Prize (1919–1927) and prizes from enterprises such as Challenge Works and the X Prize Foundation.
The X Prize Cup is a two-day air and space exposition which was the result of a partnership between the X Prize Foundation and the State of New Mexico that began in 2004 when the Ansari X-Prize was held. This led to plans to build the world's first true rocket festival. Three X-Prize Cups have been held: in 2005, 2006 and 2007. Each X Prize Cup hosts different events and demonstrations, such as rocket-powered bicycles, rocket jet packs; but particularly notable are the Lunar Lander Challenge and the Space Elevator Games. 85,000 visitors attended the 2007 X Prize Cup. Although there was no X Prize Cup in 2009, there was a Lunar Lander Challenge.
A space competition is an inducement prize contest offering a prize to be given to the first competitor who demonstrates a space vehicle, or a space exploration apparatus, which meets a set of pre-established criteria. It spurs pioneering development in private spaceflight.
Elevator:2010 was an inducement prize contest with the purpose of developing space elevator and space elevator-related technologies. Elevator:2010 organized annual competitions for climbers, ribbons and power-beaming systems, and was operated by a partnership between Spaceward Foundation and the NASA Centennial Challenges.
The Google Lunar X Prize (GLXP) was a 2007–2018 inducement prize space competition organized by the X Prize Foundation, and sponsored by Google. The challenge called for privately funded teams to be the first to land a lunar rover on the Moon, travel 500 meters, and transmit back to Earth high-definition video and images.
The Solar System Exploration Research Virtual Institute (SSERVI), originally the NASA Lunar Science Institute, is an organization, established by NASA in 2008, that supplemented and extended existing NASA lunar science programs. Supported by the NASA Science Mission Directorate (SMD) and the Exploration Systems Mission Directorate (ESMD), SSERVI is a NASA program office located at the NASA Ames Research Center and was modeled on the NASA Astrobiology Institute (NAI) with dispersed teams across the nation working together to help lead the agency's research activities related to NASA's human exploration goals. Competitively selected team investigations focused on one or more aspects of lunar science investigations of the Moon, from the Moon, and on the Moon.
Interplanetary contamination refers to biological contamination of a planetary body by a space probe or spacecraft, either deliberate or unintentional.
A space elevator is a theoretical system using a super-strong ribbon going from the surface of the Earth to a point beyond Geosynchronous orbit. The center of gravity of the ribbon would be exactly in geosynchronous orbit, so that the ribbon would always stay above the anchor point. Vehicles would climb the ribbon powered by a beam of energy projected from the surface of the Earth. Building a space elevator requires materials and techniques that do not currently exist. A variety of Space Elevator competitions have been held in order to stimulate the development of such materials and techniques.
NASA's Lunabotics Challenge
The Swamp Works is a lean-development, rapid innovation environment at NASA's Kennedy Space Center. It was founded in 2012, when four laboratories in the Surface Systems Office were merged into an enlarged facility with a modified philosophy for rapid technology development. Those laboratories are the Granular Mechanics and Regolith Operations Lab, the Electrostatics and Surface Physics Lab, the Applied Chemistry Lab, and the Life Support and Habitation Systems (LSHS) team. The first two of these are located inside the main Swamp Works building, while the other two use the facility although their primary work is located elsewhere. The team developed the Swamp Works operating philosophy from Kelly Johnson's Skunk Works, including the "14 Rules of Management", from the NASA development shops of Wernher von Braun, and from the innovation culture of Silicon Valley. The team prototypes space technologies rapidly to learn early in the process how to write better requirements, enabling them to build better products, rapidly, and at reduced cost. It was named the Swamp Works for similarity with the Skunk Works and the Phantom Works, but branded by the widespread marshes (swamps) on the Cape Canaveral and Merritt Island property of the Kennedy Space Center. The Swamp Works was co-founded by NASA engineers and scientists Jack Fox, Rob Mueller, and Philip Metzger. The logo, a robotic alligator, was designed by Rosie Mueller, a professional designer and the spouse of Rob Mueller.
Moon Diver is a proposed lunar mission concept by NASA's Jet Propulsion Laboratory that would employ a robotic lander and a – distant coaxial – two-wheeled rover called Axel to investigate the exposed geological layers on the walls of a deep lunar pit.
This article includes a list of general references, but it lacks sufficient corresponding inline citations .(April 2009) |