Educational animation

Last updated • 7 min readFrom Wikipedia, The Free Encyclopedia

Educational animations are animations produced for the specific purpose of fostering learning. It is associated with educational technology with the way it supports teaching and learning through the use of technological tools to facilitate learning and to improve performance. [1]

Contents

Background

YukiClip2A YukiClip2A.gif
YukiClip2A

The popularity of using animations to help learners understand and remember information has greatly increased since the advent of powerful graphics-oriented computers. This technology allows animations to be produced much more easily and cheaply than in former years. Previously, traditional animation required specialised labour-intensive techniques that were both time-consuming and expensive. In contrast, software is now available that makes it possible for individual educators to author their own animations without the need for specialist expertise. Teachers are no longer limited to relying on static graphics but can readily convert them into educational animations.

Animations for education

Educators are enthusiastically taking up the opportunities that computer animation offers for depicting dynamic content. For example, PowerPoint now has an easy-to-use animation facility that, in the right hands, can produce very effective educational animations. Because animations can explicitly depict changes over time (temporal changes), they seem ideally suited to the teaching of processes and procedures. When used to present dynamic content, animations can mirror both the changes in position (translation), and the changes in form (transformation) that are fundamental to learning this type of subject matter.

In contrast with static pictures, animations can show temporal change directly (rather than having to indicate it indirectly using auxiliary markings such as arrows and motion lines). Using animations instead of static graphics removes the need for these added markings so that displays can be not only simpler and less cluttered, but also more vivid, engaging, and more intuitively comprehended. In addition, the learner does not have to interpret the auxiliary markings and try to infer the changes that they summarise. Such interpretation and inference may demand a level of graphicacy skills that the learner does not possess. With animated depictions, information about the changes involved is available to be read straight from the display without the learner needing to perform mental animation. It's a bit of an exaggeration, but it's more like being kissed instead of reading about a kiss.

Some animations challenge the learner's processing capacities PumpAnim.gif
Some animations challenge the learner's processing capacities

Research evidence about the educational effectiveness of animations is mixed. Various investigations have compared the educational effectiveness of static and animated displays across a number of content domains. While there have been some findings that show positive effects of animations on learning, other studies have found no effects or even negative effects. Some propose that the efficacy depends on the way the animation characteristics engages the psychological functioning of the learner. [2] In general, it can be concluded that animations are not intrinsically more effective than static graphics. Rather, the particular characteristics of individual animations and how they are used to play a key role in the effects that they have on learning.

Do animations make learning faster?

Well-designed animations may help students learn faster and easier. They are also excellent aid to teachers when it comes to explaining difficult subjects. The difficulty of subjects may arise due to the involvement of mathematics or imagination. For instance, the electric current is invisible. The operation of electric circuits is difficult for students to understand at the beginning. With the aid of computer animations, learning and teaching might become easier, faster and amusing.

Animation training of itschool1 Animation training of itschool1.jpg
Animation training of itschool1

According to V.M. Williamson and M.R. Abraham, animation helps students learn in two ways. It facilitates the creation of mental representations of concepts, phenomenon, and processes and it also replaces difficult cognitive processes (e.g. abstraction, imagination). [1] There are also studies that revealed that learning is facilitated as animation create positive attitude among the learners, leading to positive learning outcomes. [3]

Educational effectiveness

Animations may lack educational effectiveness if target learners can't process the presented information adequately. For example, it seems that when the subject matter is complex, learners may be overwhelmed by animated presentations. This is related to the role of visual perception and cognition in human information processing. Our human perceptual and cognitive systems have limited capacities for processing information. If these limits are exceeded, learning may be compromised. For example, the pace at which the animation presents its information may exceed the speed at which the learner can process it effectively. The accompanying animation (part of a pumping system) is problematic for this reason. But the solution is obvious: slow the animation down and accompany it with a written explanation. It is unlikely that superior learning is achieved by thoughtlessly substituting animation for a static graphic but by having it accompany textual explication. Another suggestion for addressing such problems is to provide user control for the learner over how the animation plays. User controllable animations allow learners to vary aspects such as the playing speed and direction, labels and audio commentary to suit themselves.

Perceptual salience versus thematic relevance

Complexity of the subject matter may not be the only reason for difficulties that learners sometimes have with animations. It seems that problems can also arise from the perceptual effects of such presentations. In a poorly designed animation, the information that learners notice most readily in the animation may not be the information that is of greatest importance. Conversely, information that is relatively inconspicuous may be very important.

Obviously, perceptibility of information does not necessarily correspond with its actual relevance to the learning task to be performed. Features of the animated display that are most conspicuous because of their contrast with the rest of the display are not always the best place for learners to direct their attention. In other words, there can be a poor correspondence between the perceptual salience ('noticeability') of a feature and its thematic relevance , and an accompanying text is needed to correct this.

This correspondence problem can occur with both static and animated graphics. On a purely perceptual level, our attention tends to be attracted by some parts of a static display more than by other parts due to their visuospatial properties. For example, an object that is centrally placed, relatively large, unusually shaped, and of a sharply contrasting colour or texture is likely to 'jump out' of the display so that we notice it very easily. Other items in the display may receive correspondingly less attention as a result. Well-designed static educational graphics take advantage of these perceptual effects. They manipulate the characteristics of the display in order to direct learner attention to the most relevant information. This helps to ensure that the learner will extract the required information from the display. There is a problem in the design of the animation shown above in this respect. Unfortunately, there are many 'educational' graphics being produced that fail to provide learners with sufficient support of this type. Designers of animation need to take such consideration into account.

Dynamic contrast

The correspondence problems due to perceptual characteristics of a display are compounded when we go from a static to an animated graphic. Because of their dynamic character, educational animations introduce a further challenge to information extraction beyond those found with static graphics. Certain aspects of a display that changes over time have the potential to capture learner attention. If there is sufficient dynamic contrast between one or more items in the display and their surroundings, the effect can be very compelling in a perceptual sense. It seems that a fundamental level, our perceptual system is attuned to detect and follow such changes, irrespective of their importance in terms of the subject matter. As with static displays discussed above, items that are perceptually compelling (in this case because of their dynamic character) may not necessarily be of great thematic relevance to the given learning task. The big orange float in the accompanying animation is far more perceptible than the small grey air valve because of both its visuospatial characteristics, and its high level of dynamic contrast with the rest of the display.

The misleading effects of the dynamic contrast are likely to be particularly problematic for learners who lack background knowledge in the content domain depicted in an animation. These learners can be largely in the thrall of the animation's raw perceptual effects and so tend to process the presented information in a bottom-up manner. For example, their attention within the display is likely to be directed to items that have conspicuous dynamic characteristics. As a result, there is a danger that they will attend to unimportant information merely because it is perceptually compelling. However, learners who already have considerable domain specific background knowledge are likely to be less influenced by perception alone. This is because their attention is also directed to a considerable extent by their knowledge of which aspects of the subject matter are of most relevance (irrespective of their perceptibility). As a result, their processing of information in the display has a more top-down character. In the pumping system animation example, the air valve would be noticed by those who are already familiar with pumps in general because their existing background knowledge would put them on the lookout for crucial (but visually insignificant) parts of the mechanism.

See also

Related Research Articles

Multimedia is a form of communication that uses a combination of different content forms such as writing, audio, images, animations, or video into a single interactive presentation, in contrast to traditional mass media, such as printed material or audio recordings, which features little to no interaction between users. Popular examples of multimedia include video podcasts, audio slideshows and animated videos. Multimedia also contains the principles and application of effective interactive communication such as the building blocks of software, hardware, and other technologies. The five main building blocks of multimedia are text, image, audio, video, and animation.

Robert Mills Gagné was an American educational psychologist best known for his Conditions of Learning. He pioneered the science of instruction during World War II when he worked with the Army Air Corps training pilots. He went on to develop a series of studies and works that simplified and explained what he and others believed to be "good instruction." Gagné was also involved in applying concepts of instructional theory to the design of computer-based training and multimedia-based learning. His work is sometimes summarized as the Gagné assumption: that different types of learning exist, and that different instructional conditions are most likely to bring about these different types of learning.

Instructional design (ID), also known as instructional systems design and originally known as instructional systems development (ISD), is the practice of systematically designing, developing and delivering instructional materials and experiences, both digital and physical, in a consistent and reliable fashion toward an efficient, effective, appealing, engaging and inspiring acquisition of knowledge. The process consists broadly of determining the state and needs of the learner, defining the end goal of instruction, and creating some "intervention" to assist in the transition. The outcome of this instruction may be directly observable and scientifically measured or completely hidden and assumed. There are many instructional design models but many are based on the ADDIE model with the five phases: analysis, design, development, implementation, and evaluation.

In psychology, cognitivism is a theoretical framework for understanding the mind that gained credence in the 1950s. The movement was a response to behaviorism, which cognitivists said neglected to explain cognition. Cognitive psychology derived its name from the Latin cognoscere, referring to knowing and information, thus cognitive psychology is an information-processing psychology derived in part from earlier traditions of the investigation of thought and problem solving.

Graphics are visual images or designs on some surface, such as a wall, canvas, screen, paper, or stone, to inform, illustrate, or entertain. In contemporary usage, it includes a pictorial representation of data, as in design and manufacture, in typesetting and the graphic arts, and in educational and recreational software. Images that are generated by a computer are called computer graphics.

<span class="mw-page-title-main">Visualization (graphics)</span> Set of techniques for creating images, diagrams, or animations to communicate a message

Visualization or visualisation is any technique for creating images, diagrams, or animations to communicate a message. Visualization through visual imagery has been an effective way to communicate both abstract and concrete ideas since the dawn of humanity. from history include cave paintings, Egyptian hieroglyphs, Greek geometry, and Leonardo da Vinci's revolutionary methods of technical drawing for engineering and scientific purposes.

<span class="mw-page-title-main">High-dynamic-range rendering</span> Rendering of computer graphics scenes by using lighting calculations done in high-dynamic-range

High-dynamic-range rendering, also known as high-dynamic-range lighting, is the rendering of computer graphics scenes by using lighting calculations done in high dynamic range (HDR). This allows preservation of details that may be lost due to limiting contrast ratios. Video games and computer-generated movies and special effects benefit from this as it creates more realistic scenes than with more simplistic lighting models.

<span class="mw-page-title-main">Page layout</span> Part of graphic design that deals in the arrangement of visual elements on a page

In graphic design, page layout is the arrangement of visual elements on a page. It generally involves organizational principles of composition to achieve specific communication objectives.

Visual learning is a learning style among the learning styles of Neil Fleming's VARK model in which information is presented to a learner in a visual format. Visual learners can utilize graphs, charts, maps, diagrams, and other forms of visual stimulation to effectively interpret information. The Fleming VARK model also includes Kinesthetic Learning and Auditory learning. There is no evidence that providing visual materials to students identified as having a visual style improves learning.

Computer-supported collaborative learning (CSCL) is a pedagogical approach wherein learning takes place via social interaction using a computer or through the Internet. This kind of learning is characterized by the sharing and construction of knowledge among participants using technology as their primary means of communication or as a common resource. CSCL can be implemented in online and classroom learning environments and can take place synchronously or asynchronously.

<span class="mw-page-title-main">Motion graphics</span> Digital footage or animation which create the illusion of motion or rotation

Motion graphics are pieces of animation or digital footage which create the illusion of motion or rotation, and are usually combined with audio for use in multimedia projects. Motion graphics are usually displayed via electronic media technology, but may also be displayed via manual powered technology. The term distinguishes static graphics from those with a transforming appearance over time, without over-specifying the form. While any form of experimental or abstract animation can be called motion graphics, the term typically more explicitly refers to the commercial application of animation and effects to video, film, TV, and interactive applications.

User modeling is the subdivision of human–computer interaction which describes the process of building up and modifying a conceptual understanding of the user. The main goal of user modeling is customization and adaptation of systems to the user's specific needs. The system needs to "say the 'right' thing at the 'right' time in the 'right' way". To do so it needs an internal representation of the user. Another common purpose is modeling specific kinds of users, including modeling of their skills and declarative knowledge, for use in automatic software-tests. User-models can thus serve as a cheaper alternative to user testing but should not replace user testing.

E-learning theory describes the cognitive science principles of effective multimedia learning using electronic educational technology.

The split-attention effect is a learning effect inherent within some poorly designed instructional materials. It is apparent when the same modality is used for various types of information within the same display. Users must split their attention between the materials, for example, an image and text, to understand the information being conveyed. The split-attention effect can occur physically through visual and auditory splits and temporally when time distances two pieces of information that should be connected.

The worked-example effect is a learning effect predicted by cognitive load theory. Specifically, it refers to improved learning observed when worked examples are used as part of instruction, compared to other instructional techniques such as problem-solving and discovery learning. According to Sweller: "The worked example effect is the best known and most widely studied of the cognitive load effects".

The expertise reversal effect refers to the reversal of the effectiveness of instructional techniques on learners with differing levels of prior knowledge. The primary recommendation that stems from the expertise reversal effect is that instructional design methods need to be adjusted as learners acquire more knowledge in a specific domain. Expertise is described as "the ability to perform fluently in a specific class of tasks."

<span class="mw-page-title-main">Image editing</span> Processes of altering images

Image editing encompasses the processes of altering images, whether they are digital photographs, traditional photo-chemical photographs, or illustrations. Traditional analog image editing is known as photo retouching, using tools such as an airbrush to modify photographs or editing illustrations with any traditional art medium. Graphic software programs, which can be broadly grouped into vector graphics editors, raster graphics editors, and 3D modelers, are the primary tools with which a user may manipulate, enhance, and transform images. Many image editing programs are also used to render or create computer art from scratch. The term "image editing" usually refers only to the editing of 2D images, not 3D ones.

<span class="mw-page-title-main">Computer-generated imagery</span> Application of computer graphics to create or contribute to images

Computer-generated imagery (CGI) is a specific-technology or application of computer graphics for creating or improving images in art, printed media, simulators, videos and video games. These images are either static or dynamic. CGI both refers to 2D computer graphics and 3D computer graphics with the purpose of designing characters, virtual worlds, or scenes and special effects. The application of CGI for creating/improving animations is called computer animation, or CGI animation.

<span class="mw-page-title-main">Pedagogical agent</span>

A pedagogical agent is a concept borrowed from computer science and artificial intelligence and applied to education, usually as part of an intelligent tutoring system (ITS). It is a simulated human-like interface between the learner and the content, in an educational environment. A pedagogical agent is designed to model the type of interactions between a student and another person. Mabanza and de Wet define it as "a character enacted by a computer that interacts with the user in a socially engaging manner". A pedagogical agent can be assigned different roles in the learning environment, such as tutor or co-learner, depending on the desired purpose of the agent. "A tutor agent plays the role of a teacher, while a co-learner agent plays the role of a learning companion".

Seductive details are often used in textbooks, lectures, slideshows, and other forms of educational content to make a course more interesting or interactive. Seductive details can take the form of text, animations, photos, illustrations, sounds or music and are by definition: (1) interesting and (2) not directed toward the learning objectives of a lesson. John Dewey, in 1913, first referred to this as "fictitious inducements to attention." While illustrated text can enhance comprehension, illustrations that are not relevant can lead to poor learning outcomes. Since the late 1980s, many studies in the field of educational psychology have shown that the addition of seductive details results in poorer retention of information and transfer of learning. Thalheimer conducted a meta-analysis that found, overall, a negative impact for the inclusion of seductive details such as text, photos or illustrations, and sounds or music in learning content. More recently, a 2020 paper found a similar effect for decorative animations This reduction to learning is called the seductive details effect. There have been criticisms of this theory. Critics argue that seductive details do not always impede understanding and that seductive details can sometimes be motivating for learners.

References

  1. 1 2 Loureiro, Krassmann, Aliane; do, Amaral, Érico Marcelo Hoff; Becker, Nunes, Felipe; Bierhalz, Voss, Gleizer; Constantino, Zunguze, Manuel (2019). Handbook of Research on Immersive Digital Games in Educational Environments. Hershey, PA: IGI Global. pp. 168, 182. ISBN   978-1-5225-5790-6.{{cite book}}: CS1 maint: multiple names: authors list (link)
  2. Lowe, Richard; Schnotz, Wolfgang (2008). Learning with Animation: Research Implications for Design. Cambridge: Cambridge University Press. pp. i. ISBN   978-0-521-85189-3.
  3. Mehdi, Khosrow-Pour, D. B. A. (2017-06-20). Encyclopedia of Information Science and Technology, Fourth Edition. Hershey, PA: IGI Global. p. 2604. ISBN   978-1-5225-2255-3.{{cite book}}: CS1 maint: multiple names: authors list (link)