This article may be confusing or unclear to readers.(August 2021) |
Algebraic structure → Group theory Group theory |
---|
In the area of modern algebra known as group theory, the Fischer groupFi22 is a sporadic simple group of order
Fi22 is one of the 26 sporadic groups and is the smallest of the three Fischer groups. It was introduced by BerndFischer ( 1971 , 1976 ) while investigating 3-transposition groups.
The outer automorphism group has order 2, and the Schur multiplier has order 6.
The Fischer group Fi22 has a rank 3 action on a graph of 3510 vertices corresponding to its 3-transpositions, with point stabilizer the double cover of the group PSU6(2). It also has two rank 3 actions on 14080 points, exchanged by an outer automorphism.
Fi22 has an irreducible real representation of dimension 78. Reducing an integral form of this mod 3 gives a representation of Fi22 over the field with 3 elements, whose quotient by the 1-dimensional space of fixed vectors is a 77-dimensional irreducible representation.
The perfect triple cover of Fi22 has an irreducible representation of dimension 27 over the field with 4 elements. This arises from the fact that Fi22 is a subgroup of 2E6(22). All the ordinary and modular character tables of Fi22 have been computed. Hiss & White (1994) found the 5-modular character table, and Noeske (2007) found the 2- and 3-modular character tables.
The automorphism group of Fi22 centralizes an element of order 3 in the baby monster group.
Conway and Norton suggested in their 1979 paper that monstrous moonshine is not limited to the monster, but that similar phenomena may be found for other groups. Larissa Queen and others subsequently found that one can construct the expansions of many Hauptmoduln from simple combinations of dimensions of sporadic groups. For Fi22, the McKay-Thompson series is where one can set a(0) = 10 ( OEIS: A007254 ),
and η(τ) is the Dedekind eta function.
Wilson (1984) found the 12 conjugacy classes of maximal subgroups of Fi22 as follows:
In the area of modern algebra known as group theory, the baby monster groupB (or, more simply, the baby monster) is a sporadic simple group of order
In the area of modern algebra known as group theory, the Fischer groups are the three sporadic simple groups Fi22, Fi23 and Fi24 introduced by Bernd Fischer (1971, 1976).
In the area of modern algebra known as group theory, the Conway groups are the three sporadic simple groups Co1, Co2 and Co3 along with the related finite group Co0 introduced by (Conway 1968, 1969).
In the area of modern algebra known as group theory, the Suzuki groupSuz or Sz is a sporadic simple group of order
In the area of modern algebra known as group theory, the Higman–Sims group HS is a sporadic simple group of order
In mathematics, the Dedekind eta function, named after Richard Dedekind, is a modular form of weight 1/2 and is a function defined on the upper half-plane of complex numbers, where the imaginary part is positive. It also occurs in bosonic string theory.
In mathematics, Felix Klein's j-invariant or j function, regarded as a function of a complex variable τ, is a modular function of weight zero for SL(2, Z) defined on the upper half-plane of complex numbers. It is the unique such function which is holomorphic away from a simple pole at the cusp such that
In group theory, the Tits group2F4(2)′, named for Jacques Tits (French:[tits]), is a finite simple group of order
In mathematics, monstrous moonshine, or moonshine theory, is the unexpected connection between the monster group M and modular functions, in particular, the j function. The initial numerical observation was made by John McKay in 1978, and the phrase was coined by John Conway and Simon P. Norton in 1979.
In Galois theory, the inverse Galois problem concerns whether or not every finite group appears as the Galois group of some Galois extension of the rational numbers . This problem, first posed in the early 19th century, is unsolved.
In the area of modern algebra known as group theory, the Held groupHe is a sporadic simple group of order
In the area of modern algebra known as group theory, the Harada–Norton groupHN is a sporadic simple group of order
In the area of modern algebra known as group theory, the McLaughlin group McL is a sporadic simple group of order
In mathematics, the Weber modular functions are a family of three functions f, f1, and f2, studied by Heinrich Martin Weber.
In mathematics, the Steinberg triality groups of type 3D4 form a family of Steinberg or twisted Chevalley groups. They are quasi-split forms of D4, depending on a cubic Galois extension of fields K ⊂ L, and using the triality automorphism of the Dynkin diagram D4. Unfortunately the notation for the group is not standardized, as some authors write it as 3D4(K) (thinking of 3D4 as an algebraic group taking values in K) and some as 3D4(L) (thinking of the group as a subgroup of D4(L) fixed by an outer automorphism of order 3). The group 3D4 is very similar to an orthogonal or spin group in dimension 8.
In the area of modern algebra known as group theory, the Fischer groupFi24 or F24′ or F3+ is a sporadic simple group of order
In the area of modern algebra known as group theory, the Fischer groupFi23 is a sporadic simple group of order
In the area of modern algebra known as group theory, the Conway groupCo2 is a sporadic simple group of order
In the area of modern algebra known as group theory, the Conway group is a sporadic simple group of order
In mathematics, a Ramanujan–Sato series generalizes Ramanujan’s pi formulas such as,
This article needs additional or more specific categories .(August 2021) |