John Robert Anderson | |
---|---|
Born | August 27, 1947 |
Alma mater | University of British Columbia (B.A.) Stanford University (Ph.D.) |
Known for | Intelligent tutoring systems Cognitive tutors ACT-R Rational analysis |
Scientific career | |
Fields | Educational psychology Cognitive psychology (mathematics education) |
Institutions | Carnegie Mellon University |
Thesis | A stochastic model of sentence memory (1972) |
Doctoral advisor | Gordon Bower |
Notable students | Neil Heffernan Kenneth Koedinger Christian Lebiere Peter Pirolli Dario Salvucci Lael Schooler |
John Robert Anderson (born August 27, 1947) is a Canadian-born American psychologist. He is currently professor of Psychology and Computer Science at Carnegie Mellon University.
Anderson obtained a B.A. from the University of British Columbia in 1968, and a Ph.D. in Psychology from Stanford in 1972. He became an assistant professor at Yale in 1972. He moved to the University of Michigan in 1973 as a Junior Fellow (and married Lynne Reder who was a graduate student there) and returned to Yale in 1976 with tenure. He was promoted to full professor at Yale in 1977 but moved to Carnegie Mellon University in 1978. From 1988 to 1989, he served as president of the Cognitive Science Society. He was elected to the American Academy of Arts and Sciences and the National Academy of Sciences and has received a series of awards:
In cognitive psychology, John Anderson is widely known for his cognitive architecture ACT-R [6] [7] and rational analysis. [8] [9] He has published many papers on cognitive psychology, including recent criticism of unjustified claims in mathematics education that lack experimental warrant and sometimes (in extreme cases) contradict known findings in cognitive psychology. [10]
He was also an early leader in research on intelligent tutoring systems, such as cognitive tutors, and many of Anderson's former students, such as Kenneth Koedinger and Neil Heffernan, have become leaders in that area.
Anderson's research has used fMRI brain imaging to study how students learn with intelligent tutoring systems. [11] Most of his studies have looked at neural processes of students while they are solving algebraic equations or proofs.
Anderson and colleagues generated a cognitive model that predicted that while students were learning an algebra proof, neuroimages showed decreased activation in a lateral inferior prefrontal region and a predefined fusiform region. This decrease in activity showed an increased fluency in retrieving declarative information, as students required less activity in these regions to solve the problems. [11]
In a 2012 study, Anderson and Jon Fincham, a colleague at Carnegie Mellon, examined the cognitive stages participants engaged in when solving mathematical problems. These stages included encoding, planning, solving, and response. The study determined how much time participants spent in each problem solving stage when presented with a mathematical problem. Multi-voxel pattern recognition techniques and Hidden Markov models were used to determine participants' problem solving stages.
The results of the study showed that the time spent in the planning stage was dependent on the novelty of the problem. The time spent in the solving stage was dependent on the amount of computation required for the particular problem. Lastly, the time spent in the response stage was dependent on the complexity of the response required by the problem. [12]
In another study, Anderson and colleagues used a video game task to test the Decomposition Hypothesis, or the idea that a complex cognitive task can be broken down into a set of information processing components. The combination of these components remains the same across different tasks. The study used a cognitive model that predicted behavioral and activation patterns for specific regions in the brain.
The predictions involved both tonic activation, which remained stable across brain regions during game play, and phasic activation, which was present only when there was resource competition. The study's results supported the Decomposition Hypothesis. Individual differences were also found in participants' learning gains, which indicated that the rate of learning for a complex skill is dependent on cognitive capacity limits. [13]
ACT-R is a cognitive architecture mainly developed by John Robert Anderson and Christian Lebiere at Carnegie Mellon University. Like any cognitive architecture, ACT-R aims to define the basic and irreducible cognitive and perceptual operations that enable the human mind. In theory, each task that humans can perform should consist of a series of these discrete operations.
A cognitive tutor is a particular kind of intelligent tutoring system that utilizes a cognitive model to provide feedback to students as they are working through problems. This feedback will immediately inform students of the correctness, or incorrectness, of their actions in the tutor interface; however, cognitive tutors also have the ability to provide context-sensitive hints and instruction to guide students towards reasonable next steps.
Situated cognition is a theory that posits that knowing is inseparable from doing by arguing that all knowledge is situated in activity bound to social, cultural and physical contexts.
In psychology and cognitive science, a schema describes a pattern of thought or behavior that organizes categories of information and the relationships among them. It can also be described as a mental structure of preconceived ideas, a framework representing some aspect of the world, or a system of organizing and perceiving new information, such as a mental schema or conceptual model. Schemata influence attention and the absorption of new knowledge: people are more likely to notice things that fit into their schema, while re-interpreting contradictions to the schema as exceptions or distorting them to fit. Schemata have a tendency to remain unchanged, even in the face of contradictory information. Schemata can help in understanding the world and the rapidly changing environment. People can organize new perceptions into schemata quickly as most situations do not require complex thought when using schema, since automatic thought is all that is required.
Problem solving is the process of achieving a goal by overcoming obstacles, a frequent part of most activities. Problems in need of solutions range from simple personal tasks to complex issues in business and technical fields. The former is an example of simple problem solving (SPS) addressing one issue, whereas the latter is complex problem solving (CPS) with multiple interrelated obstacles. Another classification of problem-solving tasks is into well-defined problems with specific obstacles and goals, and ill-defined problems in which the current situation is troublesome but it is not clear what kind of resolution to aim for. Similarly, one may distinguish formal or fact-based problems requiring psychometric intelligence, versus socio-emotional problems which depend on the changeable emotions of individuals or groups, such as tactful behavior, fashion, or gift choices.
James Lloyd "Jay" McClelland, FBA is the Lucie Stern Professor at Stanford University, where he was formerly the chair of the Psychology Department. He is best known for his work on statistical learning and Parallel Distributed Processing, applying connectionist models to explain cognitive phenomena such as spoken word recognition and visual word recognition. McClelland is to a large extent responsible for the large increase in scientific interest in connectionism in the 1980s.
The power law of practice states that the logarithm of the reaction time for a particular task decreases linearly with the logarithm of the number of practice trials taken. It is an example of the learning curve effect on performance. It was first proposed as a psychological law by Snoddy (1928), used by Crossman (1959) in his study of a cigar roller in Cuba, and played an important part in the development of Cognitive Engineering by Card, Moran, & Newell (1983). Mechanisms that would explain the power law were popularized by Fitts and Posner (1967), Newell and Rosenbloom (1981), and Anderson (1982).
Dedre Dariel Gentner is an American cognitive and developmental psychologist. She is the Alice Gabriel Twight Professor of Psychology at Northwestern University, and a leading researcher in the study of analogical reasoning.
An intelligent tutoring system (ITS) is a computer system that imitates human tutors and aims to provide immediate and customized instruction or feedback to learners, usually without requiring intervention from a human teacher. ITSs have the common goal of enabling learning in a meaningful and effective manner by using a variety of computing technologies. There are many examples of ITSs being used in both formal education and professional settings in which they have demonstrated their capabilities and limitations. There is a close relationship between intelligent tutoring, cognitive learning theories and design; and there is ongoing research to improve the effectiveness of ITS. An ITS typically aims to replicate the demonstrated benefits of one-to-one, personalized tutoring, in contexts where students would otherwise have access to one-to-many instruction from a single teacher, or no teacher at all. ITSs are often designed with the goal of providing access to high quality education to each and every student.
Kenneth R. Koedinger is a professor of human–computer interaction and psychology at Carnegie Mellon University. He is the founding and current director of the Pittsburgh Science of Learning Center. He is widely known for his role in the development of the Cognitive Tutor software. He is also widely published in cognitive psychology, intelligent tutoring systems, and educational data mining, and his research group has repeatedly won "Best Paper" awards at scientific conferences in those areas, such as the EDM2008 Best Paper, ITS2006 Best Paper, ITS2004 Best Paper, and ITS2000 Best Paper.
Norman Henry Anderson was an American social psychologist and the founder of Information integration theory.
Domain-general learning theories of development suggest that humans are born with mechanisms in the brain that exist to support and guide learning on a broad level, regardless of the type of information being learned. Domain-general learning theories also recognize that although learning different types of new information may be processed in the same way and in the same areas of the brain, different domains also function interdependently. Because these generalized domains work together, skills developed from one learned activity may translate into benefits with skills not yet learned. Another facet of domain-general learning theories is that knowledge within domains is cumulative, and builds under these domains over time to contribute to our greater knowledge structure. Psychologists whose theories align with domain-general framework include developmental psychologist Jean Piaget, who theorized that people develop a global knowledge structure which contains cohesive, whole knowledge internalized from experience, and psychologist Charles Spearman, whose work led to a theory on the existence of a single factor accounting for all general cognitive ability.
Ron Sun is a cognitive scientist who has made significant contributions to computational psychology and other areas of cognitive science and artificial intelligence. He is currently professor of cognitive sciences at Rensselaer Polytechnic Institute, and formerly the James C. Dowell Professor of Engineering and Professor of Computer Science at University of Missouri. He received his Ph.D. in 1992 from Brandeis University.
Richard Shiffrin is an American psychologist, professor of cognitive science in the Department of Psychological and Brain Sciences at Indiana University, Bloomington. Shiffrin has contributed a number of theories of attention and memory to the field of psychology. He co-authored the Atkinson–Shiffrin model of memory in 1968 with Richard Atkinson, who was his academic adviser at the time. In 1977, he published a theory of attention with Walter Schneider. With Jeroen G.W. Raaijmakers in 1980, Shiffrin published the Search of Associative Memory (SAM) model, which has served as the standard model of recall for cognitive psychologists well into the 2000s. He extended the SAM model with the Retrieving Effectively From Memory (REM) model in 1997 with Mark Steyvers.
Marcel Just is D. O. Hebb Professor of Psychology at Carnegie Mellon University. His research uses brain imaging (fMRI) in high-level cognitive tasks to study the neuroarchitecture of cognition. Just's areas of expertise include psycholinguistics, object recognition, and autism, with particular attention to cognitive and neural substrates. Just directs the Center for Cognitive Brain Imaging and is a member of the Center for the Neural Basis of Cognition at CMU.
George Mandler was an Austrian-born American psychologist, who became a distinguished professor of psychology at the University of California, San Diego.
Robert S. Wyer Jr. is a visiting professor at the University of Cincinnati and professor (emeritus) at the University of Illinois, Urbana-Champaign. He received his doctoral degree from the University of Colorado. Wyer Jr.'s research interests cover various aspects of social information processing, including:
Rational analysis is a theoretical framework, methodology, and research program in cognitive science that has been developed by John Anderson. The goal of rational analysis as a research program is to explain the function and purpose of cognitive processes and to discover the structure of the mind. Chater and Oaksford contrast it with the mechanistic explanations of cognition offered by both computational models and neuroscience.
Michelene (Micki) T. H. Chi is a cognitive and learning scientist known for her work on the development of expertise, benefits of self-explanations, and active learning in the classroom. Chi is the Regents Professor, Dorothy Bray Endowed Professor of Science and Teaching at Arizona State University, where she directs the Learning and Cognition Lab.
Thomas L. Griffiths is an Australian academic who is the Henry R. Luce Professor of Information Technology, Consciousness, and Culture at Princeton University. He studies human decision-making and its connection to problem-solving methods in computation. His book with Brian Christian, Algorithms to Live By: The Computer Science of Human Decisions, was named one of the "Best Books of 2016" by MIT Technology Review.