Lens (optics)

Last updated

A biconvex lens BiconvexLens.jpg
A biconvex lens
Lenses can be used to focus light Lens and wavefronts.gif
Lenses can be used to focus light

A lens is a transmissive optical device that focuses or disperses a light beam by means of refraction. A simple lens consists of a single piece of transparent material, while a compound lens consists of several simple lenses (elements), usually arranged along a common axis. Lenses are made from materials such as glass or plastic, and are ground and polished or molded to a desired shape. A lens can focus light to form an image, unlike a prism, which refracts light without focusing. Devices that similarly focus or disperse waves and radiation other than visible light are also called lenses, such as microwave lenses, electron lenses, acoustic lenses, or explosive lenses.

Optics The branch of physics that studies light

Optics is the branch of physics that studies the behaviour and properties of light, including its interactions with matter and the construction of instruments that use or detect it. Optics usually describes the behaviour of visible, ultraviolet, and infrared light. Because light is an electromagnetic wave, other forms of electromagnetic radiation such as X-rays, microwaves, and radio waves exhibit similar properties.

Light beam

A light beam or beam of light is a directional projection of light energy radiating from a light source. Sunlight forms a light beam when filtered through media such as clouds, foliage, or windows. To artificially produce a light beam, a lamp and a parabolic reflector is used in many lighting devices such as spotlights, car headlights, PAR Cans and LED housings. Light from certain types of laser has the smallest possible beam divergence.

Refraction refraction of light

In physics refraction is the change in direction of a wave passing from one medium to another or from a gradual change in the medium. Refraction of light is the most commonly observed phenomenon, but other waves such as sound waves and water waves also experience refraction. How much a wave is refracted is determined by the change in wave speed and the initial direction of wave propagation relative to the direction of change in speed.

Contents

History

Light being refracted by a spherical glass container full of water. Roger Bacon, 13th century Optics from Roger Bacon's De multiplicatone specierum.jpg
Light being refracted by a spherical glass container full of water. Roger Bacon, 13th century

The word lens comes from lēns , the Latin name of the lentil, because a double-convex lens is lentil-shaped. The lentil plant also gives its name to a geometric figure. [1]

Lentil Species of plant

The lentil is an edible legume. It is a bushy annual plant known for its lens-shaped seeds. It is about 40 cm (16 in) tall, and the seeds grow in pods, usually with two seeds in each.

Lens (geometry)

In 2-dimensional geometry, a lens is a convex set bounded by two circular arcs joined to each other at their endpoints. In order for this shape to be convex, both arcs must bow outwards (convex-convex). This shape can be formed as the intersection of two circular disks. It can also be formed as the union of two circular segments, joined along a common chord.

Some scholars argue that the archeological evidence indicates that there was widespread use of lenses in antiquity, spanning several millennia. [2] The so-called Nimrud lens is a rock crystal artifact dated to the 7th century BC which may or may not have been used as a magnifying glass, or a burning glass. [3] [4] [3] [5] Others have suggested that certain Egyptian hieroglyphs depict "simple glass meniscal lenses". [6] [ verification needed ]

Nimrud lens piece of rock crystal

The Nimrud lens, also called Layard lens, is a 3000-year-old piece of rock crystal, which was unearthed in 1850 by Austen Henry Layard at the Assyrian palace of Nimrud, in modern-day Iraq. It may have been used as a magnifying glass, or as a burning-glass to start fires by concentrating sunlight, or it may have been a piece of decorative inlay.

Egyptian hieroglyphs formal writing system used by the ancient Egyptians

Egyptian hieroglyphs were the formal writing system used in Ancient Egypt. Hieroglyphs combined logographic, syllabic and alphabetic elements, with a total of some 1,000 distinct characters. Cursive hieroglyphs were used for religious literature on papyrus and wood. The later hieratic and demotic Egyptian scripts were derived from hieroglyphic writing, as was the Proto-Siniatic script that later evolved into the Phoenician alphabet. Through the Phoenician alphabet's major child systems, the Greek and Aramaic scripts, the Egyptian hieroglyphic script is ancestral to the majority of scripts in modern use, most prominently the Latin and Cyrillic scripts and the Arabic script and Brahmic family of scripts.

The oldest certain reference to the use of lenses is from Aristophanes' play The Clouds (424 BC) mentioning a burning-glass. [7] Pliny the Elder (1st century) confirms that burning-glasses were known in the Roman period. [8] Pliny also has the earliest known reference to the use of a corrective lens when he mentions that Nero was said to watch the gladiatorial games using an emerald (presumably concave to correct for nearsightedness, though the reference is vague). [9] Both Pliny and Seneca the Younger (3 BC–65 AD) described the magnifying effect of a glass globe filled with water.

Aristophanes ancient Athenian comic playwright

Aristophanes, son of Philippus, of the deme Kydathenaion, was a comic playwright of ancient Athens. Eleven of his forty plays survive virtually complete. These provide the most valuable examples of a genre of comic drama known as Old Comedy and are used to define it, along with fragments from dozens of lost plays by Aristophanes and his contemporaries.

<i>The Clouds</i> comedy by Aristophanes

The Clouds is a Greek comedy play written by the playwright Aristophanes. A lampooning of intellectual fashions in classical Athens, it was originally produced at the City Dionysia in 423 BC and was not as well received as the author had hoped, coming last of the three plays competing at the festival that year. It was revised between 420 and 417 BC and was thereafter circulated in manuscript form.

Pliny the Elder Roman military commander and writer

Pliny the Elder was a Roman author, naturalist and natural philosopher, a naval and army commander of the early Roman Empire, and friend of emperor Vespasian.

Ptolemy (2nd century) wrote a book on Optics , which however survives only in the Latin translation of an incomplete and very poor Arabic translation. The book was, however, received, by medieval scholars in the Islamic world, and commented upon by Ibn Sahl (10th century), who was in turn improved upon by Alhazen ( Book of Optics , 11th century). The Arabic translation of Ptolemy's Optics became available in Latin translation in the 12th century (Eugenius of Palermo 1154). Between the 11th and 13th century "reading stones" were invented. These were primitive plano-convex lenses initially made by cutting a glass sphere in half. The medieval (11th or 12th century) rock cystal Visby lenses may or may not have been intended for use as burning glasses. [10]

Ptolemy 2nd-century Greco-Egyptian writer and astronomer

Claudius Ptolemy was a Greco-Roman mathematician, astronomer, geographer and astrologer. He lived in the city of Alexandria in the Roman province of Egypt, wrote in Koine Greek, and held Roman citizenship. The 14th-century astronomer Theodore Meliteniotes gave his birthplace as the prominent Greek city Ptolemais Hermiou in the Thebaid. This attestation is quite late, however, and, according to Gerald Toomer, the translator of his Almagest into English, there is no reason to suppose he ever lived anywhere other than Alexandria. He died there around AD 168.

Ptolemy's Optics is a work on geometrical optics, dealing with reflection, refraction, and colour.

Ibn Sahl (mathematician) mathematician (0940-1000)

Ibn Sahl was a Persian mathematician and physicist of the Islamic Golden Age, associated with the Buwayhid court of Baghdad. Nothing in his name allows us to glimpse his country of origin.

Spectacles were invented as an improvement of the "reading stones" of the high medieval period in Northern Italy in the second half of the 13th century. [11] This was the start of the optical industry of grinding and polishing lenses for spectacles, first in Venice and Florence in the late 13th century, [12] and later in the spectacle-making centres in both the Netherlands and Germany. [13] Spectacle makers created improved types of lenses for the correction of vision based more on empirical knowledge gained from observing the effects of the lenses (probably without the knowledge of the rudimentary optical theory of the day). [14] [15] The practical development and experimentation with lenses led to the invention of the compound optical microscope around 1595, and the refracting telescope in 1608, both of which appeared in the spectacle-making centres in the Netherlands. [16] [17]

Netherlands Constituent country of the Kingdom of the Netherlands in Europe

The Netherlands is a country located mainly in Northwestern Europe. The European portion of the Netherlands consists of twelve separate provinces that border Germany to the east, Belgium to the south, and the North Sea to the northwest, with maritime borders in the North Sea with Belgium, Germany and the United Kingdom. Together with three island territories in the Caribbean Sea—Bonaire, Sint Eustatius and Saba— it forms a constituent country of the Kingdom of the Netherlands. The official language is Dutch, but a secondary official language in the province of Friesland is West Frisian.

Optical microscope microscope that uses visible light and a system of lenses to magnify images of small objects

The optical microscope, often referred to as the light microscope, is a type of microscope that commonly uses visible light and a system of lenses to magnify images of small objects. Optical microscopes are the oldest design of microscope and were possibly invented in their present compound form in the 17th century. Basic optical microscopes can be very simple, although many complex designs aim to improve resolution and sample contrast. Often used in the classroom and at home unlike the electron microscope which is used for closer viewing.

Refracting telescope type of optical telescope

A refracting telescope is a type of optical telescope that uses a lens as its objective to form an image. The refracting telescope design was originally used in spy glasses and astronomical telescopes but is also used for long focus camera lenses. Although large refracting telescopes were very popular in the second half of the 19th century, for most research purposes the refracting telescope has been superseded by the reflecting telescope which allows larger apertures. A refractor's magnification is calculated by dividing the focal length of the objective lens by that of the eyepiece.

With the invention of the telescope and microscope there was a great deal of experimentation with lens shapes in the 17th and early 18th centuries by those trying to correct chromatic errors seen in lenses. Opticians tried to construct lenses of varying forms of curvature, wrongly assuming errors arose from defects in the spherical figure of their surfaces. [18] Optical theory on refraction and experimentation was showing no single-element lens could bring all colours to a focus. This led to the invention of the compound achromatic lens by Chester Moore Hall in England in 1733, an invention also claimed by fellow Englishman John Dollond in a 1758 patent.

Construction of simple lenses

Most lenses are spherical lenses: their two surfaces are parts of the surfaces of spheres. Each surface can be convex (bulging outwards from the lens), concave (depressed into the lens), or planar (flat). The line joining the centres of the spheres making up the lens surfaces is called the axis of the lens. Typically the lens axis passes through the physical centre of the lens, because of the way they are manufactured. Lenses may be cut or ground after manufacturing to give them a different shape or size. The lens axis may then not pass through the physical centre of the lens.

Toric or sphero-cylindrical lenses have surfaces with two different radii of curvature in two orthogonal planes. They have a different focal power in different meridians. This forms an astigmatic lens. An example is eyeglass lenses that are used to correct astigmatism in someone's eye.

More complex are aspheric lenses. These are lenses where one or both surfaces have a shape that is neither spherical nor cylindrical. The more complicated shapes allow such lenses to form images with less aberration than standard simple lenses, but they are more difficult and expensive to produce.

Types of simple lenses

Types of lenses Lenses en.svg
Types of lenses

Lenses are classified by the curvature of the two optical surfaces. A lens is biconvex (or double convex, or just convex) if both surfaces are convex. If both surfaces have the same radius of curvature, the lens is equiconvex. A lens with two concave surfaces is biconcave (or just concave). If one of the surfaces is flat, the lens is plano-convex or plano-concave depending on the curvature of the other surface. A lens with one convex and one concave side is convex-concave or meniscus. It is this type of lens that is most commonly used in corrective lenses.

If the lens is biconvex or plano-convex, a collimated beam of light passing through the lens converges to a spot (a focus) behind the lens. In this case, the lens is called a positive or converging lens. The distance from the lens to the spot is the focal length of the lens, which is commonly abbreviated f in diagrams and equations. An extended hemispherical lens is a special type of plano-convex lens, in which the lens's curved surface is a full hemisphere and the lens is much thicker than the radius of curvature.

Biconvex lens Lens1.svg
Biconvex lens
Large convex lens.jpg

If the lens is biconcave or plano-concave, a collimated beam of light passing through the lens is diverged (spread); the lens is thus called a negative or diverging lens. The beam, after passing through the lens, appears to emanate from a particular point on the axis in front of the lens. The distance from this point to the lens is also known as the focal length, though it is negative with respect to the focal length of a converging lens.

Biconcave lens Lens1b.svg
Biconcave lens
Concave lens.jpg

Convex-concave (meniscus) lenses can be either positive or negative, depending on the relative curvatures of the two surfaces. A negative meniscus lens has a steeper concave surface and is thinner at the centre than at the periphery. Conversely, a positive meniscus lens has a steeper convex surface and is thicker at the centre than at the periphery. An ideal thin lens with two surfaces of equal curvature would have zero optical power, meaning that it would neither converge nor diverge light. All real lenses have nonzero thickness, however, which makes a real lens with identical curved surfaces slightly positive. To obtain exactly zero optical power, a meniscus lens must have slightly unequal curvatures to account for the effect of the lens' thickness.

Lensmaker's equation

The focal length of a lens in air can be calculated from the lensmaker's equation: [19]

where

is the focal length of the lens,
is the refractive index of the lens material,
is the radius of curvature (with sign, see below) of the lens surface closer to the light source,
is the radius of curvature of the lens surface farther from the light source, and
is the thickness of the lens (the distance along the lens axis between the two surface vertices).

The focal length f is positive for converging lenses, and negative for diverging lenses. The reciprocal of the focal length, 1/f, is the optical power of the lens. If the focal length is in metres, this gives the optical power in dioptres (inverse metres).

Lenses have the same focal length when light travels from the back to the front as when light goes from the front to the back. Other properties of the lens, such as the aberrations are not the same in both directions.

Sign convention for radii of curvature R1 and R2

The signs of the lens' radii of curvature indicate whether the corresponding surfaces are convex or concave. The sign convention used to represent this varies, but in this article a positiveR indicates a surface's center of curvature is further along in the direction of the ray travel (right, in the accompanying diagrams), while negativeR means that rays reaching the surface have already passed the center of curvature. Consequently, for external lens surfaces as diagrammed above, R1 > 0 and R2 < 0 indicate convex surfaces (used to converge light in a positive lens), while R1 < 0 and R2 > 0 indicate concave surfaces. The reciprocal of the radius of curvature is called the curvature. A flat surface has zero curvature, and its radius of curvature is infinity.

Thin lens approximation

If d is small compared to R1 and R2, then the thin lens approximation can be made. For a lens in air, f is then given by

[20]

Imaging properties

As mentioned above, a positive or converging lens in air focuses a collimated beam travelling along the lens axis to a spot (known as the focal point) at a distance f from the lens. Conversely, a point source of light placed at the focal point is converted into a collimated beam by the lens. These two cases are examples of image formation in lenses. In the former case, an object at an infinite distance (as represented by a collimated beam of waves) is focused to an image at the focal point of the lens. In the latter, an object at the focal length distance from the lens is imaged at infinity. The plane perpendicular to the lens axis situated at a distance f from the lens is called the focal plane .

If the distances from the object to the lens and from the lens to the image are S1 and S2 respectively, for a lens of negligible thickness, in air, the distances are related by the thin lens formula: [21] [22] [23]

.

This can also be put into the "Newtonian" form:

[24]

where and .

A camera lens forms a real image of a distant object. Lens3.svg
A camera lens forms a real image of a distant object.

Therefore, if an object is placed at a distance S1 > f from a positive lens of focal length f, we will find an image distance S2 according to this formula. If a screen is placed at a distance S2 on the opposite side of the lens, an image is formed on it. This sort of image, which can be projected onto a screen or image sensor, is known as a real image .

Virtual image formation using a positive lens as a magnifying glass. Lens3b.svg
Virtual image formation using a positive lens as a magnifying glass.

This is the principle of the camera, and of the human eye. The focusing adjustment of a camera adjusts S2, as using an image distance different from that required by this formula produces a defocused (fuzzy) image for an object at a distance of S1 from the camera. Put another way, modifying S2 causes objects at a different S1 to come into perfect focus.

In some cases S2 is negative, indicating that the image is formed on the opposite side of the lens from where those rays are being considered. Since the diverging light rays emanating from the lens never come into focus, and those rays are not physically present at the point where they appear to form an image, this is called a virtual image. Unlike real images, a virtual image cannot be projected on a screen, but appears to an observer looking through the lens as if it were a real object at the location of that virtual image. Likewise, it appears to a subsequent lens as if it were an object at that location, so that second lens could again focus that light into a real image, S1 then being measured from the virtual image location behind the first lens to the second lens. This is exactly what the eye does when looking through a magnifying glass. The magnifying glass creates a (magnified) virtual image behind the magnifying glass, but those rays are then re-imaged by the lens of the eye to create a real image on the retina.

Lens4.svg
A negative lens produces a demagnified virtual image.
Barlow lens.svg
A Barlow lens (B) reimages a virtual object (focus of red ray path) into a magnified real image (green rays at focus)

Using a positive lens of focal length f, a virtual image results when S1 < f, the lens thus being used as a magnifying glass (rather than if S1 >> f as for a camera). Using a negative lens (f < 0) with a real object (S1 > 0) can only produce a virtual image (S2 < 0), according to the above formula. It is also possible for the object distance S1 to be negative, in which case the lens sees a so-called virtual object. This happens when the lens is inserted into a converging beam (being focused by a previous lens) before the location of its real image. In that case even a negative lens can project a real image, as is done by a Barlow lens.

Reflectionprojection.jpg
Real image of a lamp is projected onto a screen (inverted). Reflections of the lamp from both surfaces of the biconvex lens are visible.
Convex lens (magnifying glass) and upside-down image.jpg
A convex lens (fS1) forming a real, inverted image rather than the upright, virtual image as seen in a magnifying glass

For a thin lens, the distances S1 and S2 are measured from the object and image to the position of the lens, as described above. When the thickness of the lens is not much smaller than S1 and S2 or there are multiple lens elements (a compound lens), one must instead measure from the object and image to the principal planes of the lens. If distances S1 or S2 pass through a medium other than air or vacuum a more complicated analysis is required.

Magnification

The linear magnification of an imaging system using a single lens is given by

,

where M is the magnification factor defined as the ratio of the size of an image compared to the size of the object. The sign convention here dictates that if M is negative, as it is for real images, the image is upside-down with respect to the object. For virtual images M is positive, so the image is upright.

Linear magnification M is not always the most useful measure of magnifying power. For instance, when characterizing a visual telescope or binoculars that produce only a virtual image, one would be more concerned with the angular magnification—which expresses how much larger a distant object appears through the telescope compared to the naked eye. In the case of a camera one would quote the plate scale, which compares the apparent (angular) size of a distant object to the size of the real image produced at the focus. The plate scale is the reciprocal of the focal length of the camera lens; lenses are categorized as long-focus lenses or wide-angle lenses according to their focal lengths.

Using an inappropriate measurement of magnification can be formally correct but yield a meaningless number. For instance, using a magnifying glass of 5 cm focal length, held 20 cm from the eye and 5 cm from the object, produces a virtual image at infinity of infinite linear size: M = ∞. But the angular magnification is 5, meaning that the object appears 5 times larger to the eye than without the lens. When taking a picture of the moon using a camera with a 50 mm lens, one is not concerned with the linear magnification M−50 mm / 380000 km = −1.3×10−10. Rather, the plate scale of the camera is about 1°/mm, from which one can conclude that the 0.5 mm image on the film corresponds to an angular size of the moon seen from earth of about 0.5°.

In the extreme case where an object is an infinite distance away, S1 = ∞, S2 = f and M = −f/∞= 0, indicating that the object would be imaged to a single point in the focal plane. In fact, the diameter of the projected spot is not actually zero, since diffraction places a lower limit on the size of the point spread function. This is called the diffraction limit.

Images of black letters in a thin convex lens of focal length f are shown in red. Selected rays are shown for letters E, I and K in blue, green and orange, respectively. Note that E (at 2f) has an equal-size, real and inverted image; I (at f) has its image at infinity; and K (at f/2) has a double-size, virtual and upright image. Thin lens images.svg
Images of black letters in a thin convex lens of focal length f are shown in red. Selected rays are shown for letters E, I and K in blue, green and orange, respectively. Note that E (at 2f) has an equal-size, real and inverted image; I (at f) has its image at infinity; and K (at f/2) has a double-size, virtual and upright image.

Aberrations

Optical aberration
Out-of-focus image of a spoke target..svg Defocus

HartmannShack 1lenslet.svg Tilt
Spherical aberration 3.svg Spherical aberration
Astigmatism.svg Astigmatism
Lens coma.svg Coma
Barrel distortion.svg Distortion
Field curvature.svg Petzval field curvature
Chromatic aberration lens diagram.svg Chromatic aberration

Lenses do not form perfect images, and a lens always introduces some degree of distortion or aberration that makes the image an imperfect replica of the object. Careful design of the lens system for a particular application minimizes the aberration. Several types of aberration affect image quality, including spherical aberration, coma, and chromatic aberration.

Spherical aberration

Spherical aberration occurs because spherical surfaces are not the ideal shape for a lens, but are by far the simplest shape to which glass can be ground and polished, and so are often used. Spherical aberration causes beams parallel to, but distant from, the lens axis to be focused in a slightly different place than beams close to the axis. This manifests itself as a blurring of the image. Lenses in which closer-to-ideal, non-spherical surfaces are used are called aspheric lenses. These were formerly complex to make and often extremely expensive, but advances in technology have greatly reduced the manufacturing cost for such lenses. Spherical aberration can be minimised by carefully choosing the surface curvatures for a particular application. For instance, a plano-convex lens, which is used to focus a collimated beam, produces a sharper focal spot when used with the convex side towards the beam source.

Lens5.svg

Coma

Coma, or comatic aberration, derives its name from the comet-like appearance of the aberrated image. Coma occurs when an object off the optical axis of the lens is imaged, where rays pass through the lens at an angle to the axis θ. Rays that pass through the centre of a lens of focal length f are focused at a point with distance f tan θ from the axis. Rays passing through the outer margins of the lens are focused at different points, either further from the axis (positive coma) or closer to the axis (negative coma). In general, a bundle of parallel rays passing through the lens at a fixed distance from the centre of the lens are focused to a ring-shaped image in the focal plane, known as a comatic circle. The sum of all these circles results in a V-shaped or comet-like flare. As with spherical aberration, coma can be minimised (and in some cases eliminated) by choosing the curvature of the two lens surfaces to match the application. Lenses in which both spherical aberration and coma are minimised are called bestform lenses.

Lens-coma.svg

Chromatic aberration

Chromatic aberration is caused by the dispersion of the lens material—the variation of its refractive index, n, with the wavelength of light. Since, from the formulae above, f is dependent upon n, it follows that light of different wavelengths is focused to different positions. Chromatic aberration of a lens is seen as fringes of colour around the image. It can be minimised by using an achromatic doublet (or achromat) in which two materials with differing dispersion are bonded together to form a single lens. This reduces the amount of chromatic aberration over a certain range of wavelengths, though it does not produce perfect correction. The use of achromats was an important step in the development of the optical microscope. An apochromat is a lens or lens system with even better chromatic aberration correction, combined with improved spherical aberration correction. Apochromats are much more expensive than achromats.

Different lens materials may also be used to minimise chromatic aberration, such as specialised coatings or lenses made from the crystal fluorite. This naturally occurring substance has the highest known Abbe number, indicating that the material has low dispersion.

Chromatic aberration lens diagram.svg Lens6b-en.svg

Other types of aberration

Other kinds of aberration include field curvature , barrel and pincushion distortion , and astigmatism .

Aperture diffraction

Even if a lens is designed to minimize or eliminate the aberrations described above, the image quality is still limited by the diffraction of light passing through the lens' finite aperture. A diffraction-limited lens is one in which aberrations have been reduced to the point where the image quality is primarily limited by diffraction under the design conditions.

Compound lenses

Simple lenses are subject to the optical aberrations discussed above. In many cases these aberrations can be compensated for to a great extent by using a combination of simple lenses with complementary aberrations. A compound lens is a collection of simple lenses of different shapes and made of materials of different refractive indices, arranged one after the other with a common axis.

The simplest case is where lenses are placed in contact: if the lenses of focal lengths f1 and f2 are "thin", the combined focal length f of the lenses is given by

Since 1/f is the power of a lens, it can be seen that the powers of thin lenses in contact are additive.

If two thin lenses are separated in air by some distance d, the focal length for the combined system is given by

The distance from the front focal point of the combined lenses to the first lens is called the front focal length (FFL):

[26]

Similarly, the distance from the second lens to the rear focal point of the combined system is the back focal length (BFL):

As d tends to zero, the focal lengths tend to the value of f given for thin lenses in contact.

If the separation distance is equal to the sum of the focal lengths (d = f1+f2), the FFL and BFL are infinite. This corresponds to a pair of lenses that transform a parallel (collimated) beam into another collimated beam. This type of system is called an afocal system , since it produces no net convergence or divergence of the beam. Two lenses at this separation form the simplest type of optical telescope. Although the system does not alter the divergence of a collimated beam, it does alter the width of the beam. The magnification of such a telescope is given by

which is the ratio of the output beam width to the input beam width. Note the sign convention: a telescope with two convex lenses (f1 > 0, f2 > 0) produces a negative magnification, indicating an inverted image. A convex plus a concave lens (f1 > 0 > f2) produces a positive magnification and the image is upright. For further information on simple optical telescopes, see Refracting telescope § Refracting telescope designs.

Other types

Cylindrical lenses have curvature in only one direction. They are used to focus light into a line, or to convert the elliptical light from a laser diode into a round beam. They are also used in motion picture anamorphic lenses.

Close-up view of a flat Fresnel lens. Flat flexible plastic sheet lens.JPG
Close-up view of a flat Fresnel lens.

A Fresnel lens has its optical surface broken up into narrow rings, allowing the lens to be much thinner and lighter than conventional lenses. Durable Fresnel lenses can be molded from plastic and are inexpensive.

Lenticular lenses are arrays of microlenses that are used in lenticular printing to make images that have an illusion of depth or that change when viewed from different angles.

A gradient index lens has flat optical surfaces, but has a radial or axial variation in index of refraction that causes light passing through the lens to be focused.

An axicon has a conical optical surface. It images a point source into a line along the optic axis, or transforms a laser beam into a ring. [27]

Diffractive optical elements can function as lenses.

Superlenses are made from negative index metamaterials and claim to produce images at spatial resolutions exceeding the diffraction limit. [28] The first superlenses were made in 2004 using such a metamaterial for microwaves. [28] Improved versions have been made by other researchers. [29] [30] As of 2014 the superlens has not yet been demonstrated at visible or near-infrared wavelengths. [31]

A prototype flat ultrathin lens, with no curvature has been developed. [32]

Uses

A single convex lens mounted in a frame with a handle or stand is a magnifying glass.

Lenses are used as prosthetics for the correction of visual impairments such as myopia, hypermetropia, presbyopia, and astigmatism. (See corrective lens, contact lens, eyeglasses.) Most lenses used for other purposes have strict axial symmetry; eyeglass lenses are only approximately symmetric. They are usually shaped to fit in a roughly oval, not circular, frame; the optical centres are placed over the eyeballs; their curvature may not be axially symmetric to correct for astigmatism. Sunglasses' lenses are designed to attenuate light; sunglass lenses that also correct visual impairments can be custom made.

Other uses are in imaging systems such as monoculars, binoculars, telescopes, microscopes, cameras and projectors. Some of these instruments produce a virtual image when applied to the human eye; others produce a real image that can be captured on photographic film or an optical sensor, or can be viewed on a screen. In these devices lenses are sometimes paired up with curved mirrors to make a catadioptric system where the lens's spherical aberration corrects the opposite aberration in the mirror (such as Schmidt and meniscus correctors).

Convex lenses produce an image of an object at infinity at their focus; if the sun is imaged, much of the visible and infrared light incident on the lens is concentrated into the small image. A large lens creates enough intensity to burn a flammable object at the focal point. Since ignition can be achieved even with a poorly made lens, lenses have been used as burning-glasses for at least 2400 years. [7] A modern application is the use of relatively large lenses to concentrate solar energy on relatively small photovoltaic cells, harvesting more energy without the need to use larger and more expensive cells.

Radio astronomy and radar systems often use dielectric lenses, commonly called a lens antenna to refract electromagnetic radiation into a collector antenna.

Lenses can become scratched and abraded. Abrasion-resistant coatings are available to help control this. [33]

See also

Related Research Articles

In optics, aberration is a property of optical systems such as lenses that causes light to be spread out over some region of space rather than focused to a point. Aberrations cause the image formed by a lens to be blurred or distorted, with the nature of the distortion depending on the type of aberration. Aberration can be defined as a departure of the performance of an optical system from the predictions of paraxial optics. In an imaging system, it occurs when light from one point of an object does not converge into a single point after transmission through the system. Aberrations occur because the simple paraxial theory is not a completely accurate model of the effect of an optical system on light, rather than due to flaws in the optical elements.

The focal length of an optical system is a measure of how strongly the system converges or diverges light. For an optical system in air, it is the distance over which initially collimated (parallel) rays are brought to a focus. A system with a shorter focal length has greater optical power than one with a long focal length; that is, it bends the rays more sharply, bringing them to a focus in a shorter distance.

Achromatic lens optical instrument corrected for dispersion at 2 wavelengths

An achromatic lens or achromat is a lens that is designed to limit the effects of chromatic and spherical aberration. Achromatic lenses are corrected to bring two wavelengths into focus on the same plane.

Parabolic reflector reflector that has the shape of a parabola

A parabolicreflector is a reflective surface used to collect or project energy such as light, sound, or radio waves. Its shape is part of a circular paraboloid, that is, the surface generated by a parabola revolving around its axis. The parabolic reflector transforms an incoming plane wave traveling along the axis into a spherical wave converging toward the focus. Conversely, a spherical wave generated by a point source placed in the focus is reflected into a plane wave propagating as a collimated beam along the axis.

Ritchey–Chrétien telescope specialized Cassegrain telescope

A Ritchey–Chrétien telescope is a specialized variant of the Cassegrain telescope that has a hyperbolic primary mirror and a hyperbolic secondary mirror designed to eliminate off-axis optical errors (coma). The RCT has a wider field of view free of optical errors compared to a more traditional reflecting telescope configuration. Since the mid 20th century, a majority of large professional research telescopes have been Ritchey–Chrétien configurations; some well-known examples are the Hubble Space Telescope, the Keck telescopes and the ESO Very Large Telescope.

Spherical aberration

Spherical aberration is a type of aberration found in optical systems that use elements with spherical surfaces. Lenses and curved mirrors are most often made with surfaces that are spherical, because this shape is easier to form than non-spherical curved surfaces. Light rays that strike a spherical surface off-centre are refracted or reflected more or less than those that strike close to the centre. This deviation reduces the quality of images produced by optical systems.

Optical telescope telescope which is used to focus light from the visible part of the electromagnetic spectrum

An optical telescope is a telescope that gathers and focuses light, mainly from the visible part of the electromagnetic spectrum, to create a magnified image for direct view, or to make a photograph, or to collect data through electronic image sensors.

Reflecting telescope telescopes that reflect light with a combination of mirrors

A reflecting telescope is a telescope that uses a single or a combination of curved mirrors that reflect light and form an image. The reflecting telescope was invented in the 17th century, by Isaac Newton, as an alternative to the refracting telescope which, at that time, was a design that suffered from severe chromatic aberration. Although reflecting telescopes produce other types of optical aberrations, it is a design that allows for very large diameter objectives. Almost all of the major telescopes used in astronomy research are reflectors. Reflecting telescopes come in many design variations and may employ extra optical elements to improve image quality or place the image in a mechanically advantageous position. Since reflecting telescopes use mirrors, the design is sometimes referred to as a "catoptric" telescope.

Newtonian telescope

The Newtonian telescope, also called the Newtonian reflector or just the Newtonian, is a type of reflecting telescope invented by the English scientist Sir Isaac Newton (1642–1727), using a concave primary mirror and a flat diagonal secondary mirror. Newton's first reflecting telescope was completed in 1668 and is the earliest known functional reflecting telescope. The Newtonian telescope's simple design makes it very popular with amateur telescope makers.

Magnification process of enlarging something only in appearance, not in physical size

Magnification is the process of enlarging the apparent size, not physical size, of something. This enlargement is quantified by a calculated number also called "magnification". When this number is less than one, it refers to a reduction in size, sometimes called minification or de-magnification.

Geometrical optics, or ray optics, describes light propagation in terms of rays. The ray in geometric optics is an abstraction useful for approximating the paths along which light propagates under certain circumstances.

Eyepiece type of lens attached to a variety of optical devices such as telescopes and microscopes; usually the lens that is closest to the eye when someone looks through the device, placed near the focal point of the objective to magnify the image

An eyepiece, or ocular lens, is a type of lens that is attached to a variety of optical devices such as telescopes and microscopes. It is so named because it is usually the lens that is closest to the eye when someone looks through the device. The objective lens or mirror collects light and brings it to focus creating an image. The eyepiece is placed near the focal point of the objective to magnify this image. The amount of magnification depends on the focal length of the eyepiece.

Catadioptric system optical system where refraction and reflection are combined

A catadioptric optical system is one where refraction and reflection are combined in an optical system, usually via lenses (dioptrics) and curved mirrors (catoptrics). Catadioptric combinations are used in focusing systems such as searchlights, headlamps, early lighthouse focusing systems, optical telescopes, microscopes, and telephoto lenses. Other optical systems that use lenses and mirrors are also referred to as "catadioptric" such as surveillance catadioptric sensors.

Cassegrain reflector type of telescope reflector

The Cassegrain reflector is a combination of a primary concave mirror and a secondary convex mirror, often used in optical telescopes and radio antennas, the main characteristic being that the optical path folds back onto itself, relative to the optical system's primary mirror entrance aperture. This design puts the focal point at a convenient location behind the primary mirror and the convex secondary adds a telephoto effect creating a much longer focal length in a mechanically short system.

Aspheric lens lens whose surface profiles are not portions of a sphere or cylinder

An aspheric lens or asphere is a lens whose surface profiles are not portions of a sphere or cylinder. In photography, a lens assembly that includes an aspheric element is often called an aspherical lens.

Thin lens

In optics, a thin lens is a lens with a thickness that is negligible compared to the radii of curvature of the lens surfaces. Lenses whose thickness is not negligible are sometimes called thick lenses.

Curved mirror type of mirror

A curved mirror is a mirror with a curved reflecting surface. The surface may be either convex or concave. Most curved mirrors have surfaces that are shaped like part of a sphere, but other shapes are sometimes used in optical devices. The most common non-spherical type are parabolic reflectors, found in optical devices such as reflecting telescopes that need to image distant objects, since spherical mirror systems, like spherical lenses, suffer from spherical aberration. Distorting mirrors are used for entertainment. They have convex and concave regions that produce deliberately distorted images.

Achromatic telescope type of refracting telescope

The achromatic telescope is a refracting telescope that uses an achromatic lens to correct for chromatic aberration.

Petzval field curvature

Petzval field curvature, named for Joseph Petzval, describes the optical aberration in which a flat object normal to the optical axis cannot be brought properly into focus on a flat image plane.

References

  1. The variant spelling lense is sometimes seen. While it is listed as an alternative spelling in some dictionaries, most mainstream dictionaries do not list it as acceptable.
    • Brians, Paul (2003). Common Errors in English. Franklin, Beedle & Associates. p. 125. ISBN   978-1-887902-89-2 . Retrieved 28 June 2009. Reports "lense" as listed in some dictionaries, but not generally considered acceptable.
    • Merriam-Webster's Medical Dictionary. Merriam-Webster. 1995. p. 368. ISBN   978-0-87779-914-6. Lists "lense" as an acceptable alternate spelling.
    • "Lens or Lense – Which is Correct?". writingexplained.org. 2017-04-30. Analyses the almost negligible frequency of use and concludes that the misspelling is a result of a wrong singularisation of the plural (lenses).
  2. Sines, George; Sakellarakis, Yannis A. (1987). "Lenses in antiquity". American Journal of Archaeology. 91 (2): 191–196. doi:10.2307/505216. JSTOR   505216.
  3. 1 2 Whitehouse, David (1 July 1999). "World's oldest telescope?". BBC News. Retrieved 10 May 2008.
  4. "The Nimrud lens/The Layard lens". Collection database. The British Museum. Retrieved 25 November 2012.
  5. D. Brewster (1852). "On an account of a rock-crystal lens and decomposed glass found in Niniveh". Die Fortschritte der Physik (in German). Deutsche Physikalische Gesellschaft. p. 355.
  6. Kriss, Timothy C.; Kriss, Vesna Martich (April 1998). "History of the Operating Microscope: From Magnifying Glass to Microneurosurgery". Neurosurgery. 42 (4): 899–907. doi:10.1097/00006123-199804000-00116. PMID   9574655.
  7. 1 2 Aristophanes (22 Jan 2013) [First performed in 423 BC]. The Clouds. Translated by Hickie, William James. Project Gutenberg. EBook #2562.
  8. Pliny the Elder, The Natural History (trans. John Bostock) Book XXXVII, Chap. 10.
  9. Pliny the Elder, The Natural History (trans. John Bostock) Book XXXVII, Chap. 16
  10. Tilton, Buck (2005). The Complete Book of Fire: Building Campfires for Warmth, Light, Cooking, and Survival. Menasha Ridge Press. p. 25. ISBN   978-0-89732-633-9.
  11. Glick, Thomas F.; Steven John Livesey; Faith Wallis (2005). Medieval science, technology, and medicine: an encyclopedia. Routledge. p. 167. ISBN   978-0-415-96930-7 . Retrieved 24 April 2011.
  12. Al Van Helden. The Galileo Project > Science > The Telescope. Galileo.rice.edu. Retrieved on 6 June 2012.
  13. Henry C. King (28 September 2003). The History of the Telescope. Courier Dover Publications. p. 27. ISBN   978-0-486-43265-6 . Retrieved 6 June 2012.
  14. Paul S. Agutter; Denys N. Wheatley (12 December 2008). Thinking about Life: The History and Philosophy of Biology and Other Sciences. Springer. p. 17. ISBN   978-1-4020-8865-0 . Retrieved 6 June 2012.
  15. Vincent Ilardi (2007). Renaissance Vision from Spectacles to Telescopes. American Philosophical Society. p. 210. ISBN   978-0-87169-259-7 . Retrieved 6 June 2012.
  16. Microscopes: Time Line, Nobel Foundation. Retrieved 3 April 2009
  17. Fred Watson (1 October 2007). Stargazer: The Life and Times of the Telescope. Allen & Unwin. p. 55. ISBN   978-1-74175-383-7 . Retrieved 6 June 2012.
  18. This paragraph is adapted from the 1888 edition of the Encyclopædia Britannica.
  19. Greivenkamp 2004 , p. 14
    Hecht 1987 , § 6.1
  20. Hecht 1987, § 5.2.3.
  21. Nave, Carl R. "Thin Lens Equation". Hyperphysics. Georgia State University. Retrieved March 17, 2015.
  22. Colwell, Catharine H. "Resource Lesson: Thin Lens Equation". PhysicsLab.org. Retrieved March 17, 2015.
  23. "The Mathematics of Lenses". The Physics Classroom. Retrieved March 17, 2015.
  24. Hecht 2002, p. 120.
  25. There are always 3 "easy rays". For the third ray in this case, see File:Lens3b third ray.svg.
  26. Hecht 2002, p. 168.
  27. Proteep Mallik (2005). "The Axicon" (PDF). Archived from the original (PDF) on 23 November 2009. Retrieved 22 November 2007.
  28. 1 2 Grbic, A.; Eleftheriades, G. V. (2004). "Overcoming the Diffraction Limit with a Planar Left-handed Transmission-line Lens". Physical Review Letters . 92 (11): 117403. Bibcode:2004PhRvL..92k7403G. doi:10.1103/PhysRevLett.92.117403. PMID   15089166.
  29. Valentine, J.; et al. (2008). "Three-dimensional optical metamaterial with a negative refractive index". Nature . 455 (7211): 376–9. Bibcode:2008Natur.455..376V. doi:10.1038/nature07247. PMID   18690249.
  30. Yao, Jie; Liu, Zhaowei; Liu, Yongmin; Wang, Yuan; Sun, Cheng; Bartal, Guy; Stacy, Angelica M.; Zhang, Xiang (2008-08-15). "Optical Negative Refraction in Bulk Metamaterials of Nanowires". Science. 321 (5891): 930. Bibcode:2008Sci...321..930Y. CiteSeerX   10.1.1.716.4426 . doi:10.1126/science.1157566. ISSN   0036-8075. PMID   18703734.
  31. Nielsen, R.B.; Thoreson, M.D.; Chen, W.; Kristensen, A.; Hvam, J.M.; Shalaev, V. M.; Boltasseva, A. (2010). "Toward superlensing with metal–dielectric composites and multilayers" (PDF). Applied Physics B. 100 (1): 93. Bibcode:2010ApPhB.100...93N. doi:10.1007/s00340-010-4065-z. Archived from the original (PDF) on 9 March 2013.
  32. Patel, Prachi. "Good-Bye to Curved Lens: New Lens Is Flat" . Retrieved 2015-05-16.
  33. Schottner, G (May 2003). "Scratch and Abrasion Resistant Coatings on Plastic Lenses—State of the Art, Current Developments and Perspectives". Journal of Sol-Gel Science and Technology . pp. 71–79. Retrieved 28 December 2009.

Bibliography

Simulations