Mediorhynchus

Last updated

Mediorhynchus
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Acanthocephala
Class: Archiacanthocephala
Order: Gigantorhynchida
Family: Gigantorhynchidae
Genus: Mediorhynchus
Van Cleave, 1916 [1]

Mediorhynchus is a genus of small parasitic spiny-headed (or thorny-headed) worms. [2] Phylogenetic analysis has been conducted on two known species of Mediorhynchus and confirmed the placement along with the related genus Gigantorhynchus in the family Gigantorhynchida. The distinguishing features of this order among archiacanthocephalans is a divided proboscis (specifically, the presence of a "teloboscis" which is the posterior third of a proboscis). This genus contains fifty-eight species that are distributed globally. These worms exclusively parasitize birds by attaching themselves around the cloaca using their hook-covered proboscis. The bird hosts are of different orders.

Contents

Taxonomy

Mediorhynchus is monophyletic based on phylogenetic analysis. [3] [4]

Archiacanthocephala
Archiacanthocephala
Oligacanthorhynchidae

Macracanthorhynchus ingens

Oncicola venezuelensis

Oligacanthorhynchus tortuosa

Nephridiacanthus major

Moniliformidae

Moniliformis moniliformis

Gigantorhynchida

Mediorhynchus sp.

Gigantorhynchus echinodiscus

Phylogenetic reconstruction for select species in the class Archiacanthocephala [5] [6]

Description

Species can be identified primarily morphologically by the arrangement of hooks of the proboscis. [7] The presence of a divided proboscis (specifically, the presence of a "teloboscis" which is the posterior third of a proboscis) is an autapomorphy of Mediorhynchus. [8] Males in some species possess eight cement glands which are used to temporarily close the posterior end of the female after copulation. [9]

Species

There are 59 species in the genus Mediorhynchus. [10] [11] [lower-alpha 1]

M. africanus has been found parasitizing the helmeted guinea fowl (Numida meleagris) in Kruger National Park, South Africa, Morocco, Nigeria (reported as Numida ptilorhyncha) and Burkina Faso, and the Yellow-necked spurfowl (Pternistis leucoscepus) in Kenya. One mitochondrial and one nuclear gene sequence confirmed that M. africanus and M. gallinarum are allopatric sister species with 9.7% genetic sequence divergence. [3] It is synonymous with Empodius segmentatus (de Marval, 1902) Southwell et MacFie, 1925 and Mediorhynchus selengensis Harris 1973. [10] The species name africanus is named for the worm's distribution across sub-Saharan Africa. [3]

The trunk is pseudosegmented, flattened laterally, has many prevalent sensory pits, and measures 3.0 to 74.0 mm long by 0.5 to 2.80 mm wide in the male and measures between 4.00 and 110.00 mm long by 0.60 and 4.00 mm wide in the much larger female. There are up to 100 annuli (structures that permits shortening and lengthening of the body by telescoping) in females but fewer in the shorter males. The proboscis is divided by a prominent ridge into two parts: anterior and posterior. The anterior proboscis is pear or apple-shaped with a truncated bare apical end measuring 250 to 339 long by 278 to 478 wide in the male and 300 to 438 long by 330 to 510 wide in the female. The anterior proboscis has two prominent apical pores and 18 to 22 longitudinal rows of 4 to 6 hooks each. The hooks posteriorly directed and measure between 35 and 76 long with the smallest found anteriorly and the longest in the middle. The posterior proboscis is conically shaped and measures 291 to 332 long by 591 to 689 wide at junction with anterior trunk in the male, and 323 to 365 long by 99 to 745 wide at junction with anterior trunk in the female. Except for the posterior most end, the posterior proboscis is covered in very thin spines that are curved posteriorly or undulating with a total of 26 to 40 longitudinal rows of 2 to 6 spines each measuring 14 to 43 long with the longest spines found anteriorly. The Proboscis receptacle is single-walled with anterior portion encased in jacket of adjacent retractor fibers and measures 0.64 to 1.23 mm long by 0.11 to 0.44 mm wide in the male and 0.64 to 1.80 mm long by 0.11 to 0.55 mm wide in the female. The proboscis retractor muscles are prominent and attached to the proboscis receptacle near its posterior end dorsally. The lemnisci long, digitiform, unequal, and unattached. The shorter lemniscus measure between 1.60 and 3.38 mm long by 0.21 and 0.31 mm wide, with 5 or 6 giant nuclei in the male and measure 1.60 to 5.50 mm long by 0.19 to 0.33 mm wide, with 5 or 6 giant nuclei in the female. Longer lemniscus measures 2.15 to 3.47 mm long by 0.21 to 0.33 mm wide with 6, occasionally 7, giant nuclei in the male and measures 2.12 to 7.31 mm long by 0.19 to 0.62 mm wide with 6 giant nuclei in the female. The male reproductive system is located in the posterior third of trunk and consists of two oblong testes measuring Anterior testis measure 0.37 to 4.10 mm long by 0.30 to 1.10 mm wide and the posterior testis measure 0.32 to 3.15 mm wide. There are eight clustered cement glands larger anteriorly, each with one large central giant nucleus and with independent cement ducts emptying at posterior end of Saefftigen’s pouch, along with prominent common sperm duct. The male gonopore is terminal. The female reproductive system is short and located in the broad and flat posterior end of trunk. The uterine bell contains many large nucleated cells with its dorsal and ventral anterior ends connected to body wall with filaments. The gonopore is sub-ventral occasionally covered by a looping posterior trunk expansion. The eggs are ovoid being 65 to 86 long by 39 to 52 wide. [3]

M. cambellensis has been found infesting the intestine of an oriole and flycatcher on Great Nicobar Island. This worm closely resembles M. armenicum but differs from it in number of proboscis hooks and extent of lemnisci. The male is 9.13 mm long and 1.2 mm wide whereas the female is larger measuring 13 to 16 mm long and 2 mm wide. The proboscis is short and club shaped and 0.83 mm long in the male and 1.0 mm long in the female. The distal portion of the proboscis is truncated, the proximal portion is conical, and the proboscis receptacle 0.66 mm long. The proboscis hooks are anterior and in seven spiral rows each of 7–9 large hooks, posterior hooks are very numerous and small. The lemnisci are almost equal, measuring 3.15 by 0.25 mm. The testes are almost equal and measure 1.2 by 0.44 mm and the eggs measure 0.055 by 0.033 mm. There are four pairs of cement glands that are difficult to distinguish. The species name, cambellensis was named after the location the hosts were caught, Campbell Bay. [12]

M. centurorum was found in the egg and larval forms in Pennsylvania wood cockroach (Parcoblatta pensylvanica). In the laboratory setting, these worms were found to infect red-bellied woodpeckers (Melanerpes carolinus), red-headed woodpeckers (Melanerpes erythrocephalus), Northern flicker, (Colaptes auratus); and a hairy woodpecker, (Dendrocopos villosus) with a mean prepatent period of 35 days. Cystacanths fed to starlings (Sturnus vaulgaris), and red-winged blackbirds, Agelaius phoeniceus, did not produce infections. [13] The eggs have 4 membranes, are 55 um long and have an elongation ratio of 1.53. [14]

M. channapettae has been found birds of Kerala, India. [15]

M. cisticolae has been found infesting the Red-faced cisticola (Cisticola erythrops) which is the type host, in the Cote D'Ivoire. The species name cisticolae is named after the host genus Cisticola . [16]

M. conirostris parasitizes rodents in Egypt and has a proboscis which contains 16 to 20 longitudinal rows of four to five hooks. [18]

M. corcoracis was found parasitising the white-winged chough (Corcorax melanorhamphos) in New South Wales, Queensland, Victoria, and South Australia, Australia. It is named after the genus name of the host species Corcorax. It is also found in several species of crow including the little crow Corvus bennetti from , the Australian raven Corvus coronoides , and the little raven Corvus mellori all from South Australia. It has also been found in the Australian Magpie-lark (Grallina cyanoleuca). [17]

M. emberizae is found infesting the intestines of the red-cowled cardinal (Paroaria dominicana) in the State of Bahia, Brazil. [21]

M. fatimaae has been found parasitizing the White-eyed buzzard (Burastur teesa) in Karachi, Pakistan. It is distinguished mainly by a unique proboscis armature of 10–12 longitudinal rows having 7–8 hooks and 10 longitudinal rows having 7–8 spines and eggs measuring 0.041–0.045 mm by 0.015–0.018 mm. [22]

M. gallinarum was found infecting chickens (Gallus gallus) in India, other Asian countries, [3] and Africa. [18] M. gallinarum is similar to M. africanus however specimens from Indonesia and elsewhere are cylindrical and non-segmented, the proboscis has 18 to 22 longitudinal rows of four to five hooks [18] and lacks prominent apical pores, sensory pits are rare on the trunk, the posterior end of the female is pointed with a terminal gonopore, and the eggs are smaller. [3]

M. gibsoni was found infesting the White-eyed buzzard (Butastur teesa) in Karachi, Sindh, Pakistan. The worm has a long pseudosegmented body with a short neck. The proboscis is long with a sac-like receptacle and possesses 25 circular longitudinal rows of between 8 and 12 hooks at the anterior region, and 10 rows of 8 to 16 spines at the posterior region. The two testes are oval and there are eight cement glands. [24]

M. giganteus has been found parasitizing the domestic turkey (Meleagris gallopavo) in East Africa. The proboscis has about 14 longitudinal rows of five hooks with a maximum body length of 11 cm found in a female. [18]

M. grandis has been found in the small intestine of the Common grackle (Quiscalus quiscula) in Maryland, New Jersey, Kansas, Illinois, Kentucky, the American crow (Corvus brachyrhynchos) in Maryland and Ohio, Eastern meadowlark (Sturnella magna) in North Carolina, Ohio, Illinois, Oklahoma, and Texas, Red-winged blackbird (Agelaius phoeniceus)) in Ohio and Texas, Rusty blackbird (Euphagus carolinus) in Illinois, Brown-headed cowbird (Molothrus ater) in Texas, the Saltmarsh sparrow (Ammospiza caudacutus) or a Nelson's sparrow (Ammospiza nelsoni) [lower-alpha 3] in Texas and the American robin (Turdus migratorius) in Ohio. Females are 27 to 51 mm long and 0.8 to 1.44 wide, whereas the males are smaller being 7 to 12 mm long and 0.6 to 0.8 mm wide. The proboscis is cone-shaped and 0.57 to 0.86 mm long and is divided into anterior and posterior portions. The anterior portion of the proboscis has 18 longitudinal rows of hooks each with 4 to 5 hooks (averaging a total of 76 hooks), and each hook having posteriorly directed roots. The posterior region of the proboscis has around 30 longitudinal rows of small hooks each with 4 to 6 hooks (averaging a total of 130).There are five to eight pyriform cement glands. Testes are oval (0.98 to 1.03 mm by 0.26 to 0.35 mm). Leminsci are filiform and have 6 nuclei each. [26] The worms have been found in the intermediate host, grasshoppers. [13] The eggs have 4 membranes, are 47.5 um long and have an elongation ratio of 1.86. [14]

M. kuntzi has been found parasitizing curlews (Numenius) in Egypt. The proboscis has 24 rows of five to six hooks. [18]

M. Mediorhynchus lanius has been found infesting the Long-tailed shrike (Lanius schach) in the Quang Ninh Province, Vietnam. It is named after the genus name of the host species Lanius [27]

M. leptis has been found parasitizing the Common kestrel (Falco tinnunculus) in Egypt. The proboscis has 22 longitudinal rows of five to six hooks. [18]

M. lophurae is a parasite of the Silver pheasant (Lophura nycthemera) and is found in Lang Son, Vietnam. [28]

M. mattei has been found in the digestive tract of the Northern red-billed hornbill (Tockus erythrorhynchus) which is the type-host in Senegal. Male worms are 2–3 cm in length, females are 3–11 cm in length. It was described in 1982; its name honours French zoologist Xavier Mattei who collected the birds containing this acantocephalan used to identify the species. [18]

M. micranthus was found infesting the Eurasian skylark (Alauda arvensis) and the Crested lark (Galerida cristata) in the Golestan Province of Iran. [29]

The proboscis of M. mokgalongi has between 125 and 156 hooks arranged in 24 to 26 longitudinal rows of 24 to 26 hooks followed by 30 rows of 5 to 6 spines. [30] It was found infesting a Karoo Thrush bird (Turdus smithi) in Polokwane, Limpopo Province. South Africa. The parasite was named after Mahlo Mokgalong for his contribution to the field of bird parasitology. [31]

M. nickoli has been found parasitizing the Black kite (Milvus migrans) in Karachi, Pakistan. It is distinguished mainly by a unique proboscis armature of 10 longitudinal rows having 7–8 hooks and six longitudinal rows having 6–8 spines and eggs measuring 0.046–0.051 mm by 0.0076–0.015 mm. [22]

M. numidae was found infesting the helmeted guinea fowl (Numida meliagris) in Pretoria, Gauteng Province, South Africa. Meyer renamed this species in 1932 from Heteroplus numidae. [32] The proboscis has twelve longitudinal rows of three hooks. [18]

In an aviary setting, M. orientalis was found infesting the purple starling (Lamprotornis purpureus), Rüppell's starling (Lamprotornis purpuroptera), and the Bali myna (Leucopsar rothschildi) with the intermediate hosts being the Surinam cockroach (Pycnoscelus surinamensis) and the American cockroach (Periplaneta americana). [33] The eggs are 53 um long and have an elongation ratio of 2.12. [14]

M papillosus was found infesting the rufous-collared sparrows, (Zonotrichia capensis) in northern and central Chile. [34] The eggs are 42.5 um long and have an elongation ratio of 2.02. [14] It is the type species of the genus. [35] M. bakeri but was found to be a junior synonym [11] was found infesting the small intestines of the Northern bobwhite (Colinus virginianus) in Leon County, Florida. [36]

M. alecturae(Johnston and Edmonds, 1947) [37] [lower-alpha 4] is considreded a junior synonym of M papillosus. [27] It occurs only in the Australian brushturkey (Alectura lathami) and located in Queensland, Australia. It is named after the genus name of the host species Alectura. [37] [17]

M. peruensis was found infesting the Chiguanco thrush (Turdus chiguanco) in Peru. [38]

M. pintoi was found infesting the Spotted nothura (Nothura maculosa) from Minas Gerais, Brazil. Only a damaged female specimen was discovered, and the original description is lost. [39]

M. robustus was found infesting the intestines of a Yellow-breasted chat (Icteria virens) in Washington, United States and the Long-tailed Meadowlark (Sturnella loyca) in the Biobío Region, Chile. The largest hooks are 38 microns. The intermediate hosts for this worm are unknown. M. Robustus has been found in larval cystacanth form the Raccoon dog (Nyctereutes procyonoides) in Japan, but this is likely a dead end host since all known final hosts for this species are Passeriformes . [40] The eggs are 38 um long and have an elongation ratio of 2.38. [14]

M. rodensis was found in the small intestine of the Eurasian jay (Garrulus glandarius) in Lakatnik in the Vrachanska Planina mountains of Bulgaria. [41]

M. sipocotensis was found parasitizing the American robin (Turdus migratorius) in Marion County, Indiana. The worms possess a globular proboscis armed with concentric spines and a sac-like body with no spines on the trunk. They also have large unfragmented epidermal nuclei. The females possess two ligament sacs, and the males possess eight cement glands. [43]

M. spinaepaucitas has been found infesting the Yellow-throated longclaw (Macronyx croceus) in the Cote D'Ivoire. [16]

M. taeniatus has been found infesting the African pied hornbill (Tockus fasciatus) in the Cote D'Ivoire. [16] It has also been found infesting the helmeted guinea fowl (Numida meliagris) in Kimberley, Northern Cape Province, South Africa and the Southern Yellow-billed Hornbill (Tockus leucomelas) in Limpopo Province, South Africa. It was renamed from Echinorhynchus taeniatus to its present name by Dollfus in 1936. [32]

M. tenuis was found in the small intestine of the Common rock thrush (Monticola saxatilis) in the Iskarskoto defile in the Vrachanska Planina mountains of Bulgaria. [41] It is also found in passeriforms in North Africa. The proboscis has 24 longitudinal rows of four to five hooks. [18]

M. textori is a parasite of the Village weaver (Ploceus cucullatus reported as the synonym Textor cucullatus) in Ghana. The proboscis has 10 to 11 longitudinal rows of nine to ten hooks. [18] The eggs are 62.5 um long and have an elongation ratio of 1.54. [14]

M. turdi has been found infesting the African thrush (Turdus pelios) in the Cote D'Ivoire. The species name turdi derives from the genus name of the type host Turdus . [16]

M. turnixena was found infesting the Spotted buttonquail (Turnix ocellata) in the Philippines. [44]

M. vaginatus was found infesting the Green aracari (Pteroglossus viridis), the Channel-billed toucan (Ramphastos vitellinus reported as Rhamphastus culminatus), a Cock-of-the-rock (reported as Rupicola crocea) and the bobolink (Dolichonyx oryzivorus). [35]

M. vancleavei is a parasite of birds in Sweden including the Common sandpiper (Actitis hypoleucos reported as Tringa hypoleucos). [35] The species name vancleavei is derived from the named of American parasitologist Harley Jones Van Cleave who originally named the genus Mediorhynchus.

M. wardi is a parasite of passeriforms in Kenya. The proboscis has 24 to 26 longitudinal rows of six to eight hooks. [18] The eggs are 52 um long and have an elongation ratio of 1.68. [14]

M. zosteropis was found in the small intestine of the Hooded crow (Corvus cornix) in the Vratsa in the Vrachanska Planina mountains of Bulgaria and generally distributed in New Caledonia and the Palaearctic. [41] It is also reported in the Muscicapidae Diaphanopterus naevius similimus and the silvereye (Zosterops lateralis) in New Caledonia. [35]

Hosts

Life cycle of Acanthocephala. Acanthocephala LifeCycle lg.jpg
Life cycle of Acanthocephala.

The life cycle of an acanthocephalan consists of three stages beginning when an infective acanthor (development of an egg) is released from the intestines of the definitive host and then ingested by an arthropod, the intermediate host. The intermediate hosts of Mediorhynchus are insects including grasshoppers and cockroaches. When the acanthor molts, the second stage called the acanthella begins. This stage involves penetrating the wall of the mesenteron or the intestine of the intermediate host and growing. The final stage is the infective cystacanth which is the larval or juvenile state of an Acanthocephalan, differing from the adult only in size and stage of sexual development. The cystacanths within the intermediate hosts are consumed by the definitive host, usually attaching to the walls of the intestines, and as adults they reproduce sexually in the intestines. The acanthor are passed in the feces of the definitive host and the cycle repeats. There are no known paratenic hosts (hosts where parasites infest but do not undergo larval development or sexual reproduction) for Mediorhynchus. [49]

Mediorhynchus species exclusively parasitize avian hosts. There are no reported cases of Mediorhynchus infesting humans in the English language medical literature. [48]


Notes

  1. A binomial authority in parentheses indicates that the species was originally described in a genus other than Mediorhynchus.
  2. M. emberizae was originally named Echinorhynchus emberizae by Karl Asmund Rudolphi in 1819 but was renamed.
  3. Reported as a sharp-tailed sparrow Passerherbulus caudacutus which has been determined to be two species. [25]
  4. The species was originally named Empodius alecturae.
  5. The species was originally named Empodius turnixena before obtaining its current name. [35]
  6. The species was originally named Echinorhynchus vaginatus and was later renamed Empodius vaginatus by Travassos in 1917 before obtaining its current name. [35]
  7. The species was originally named Heteracanthothynchus vancleave. [35]
  8. M. zosteropis was originally named Centrorhynchus zosteropis by Porta in 1913 but was renamed. [35]
  9. There are no known aberrant human infections for Mediorhynchus species. [48]

Related Research Articles

<span class="mw-page-title-main">Acanthocephala</span> Group of parasitic thorny-headed worms

Acanthocephala is a group of parasitic worms known as acanthocephalans, thorny-headed worms, or spiny-headed worms, characterized by the presence of an eversible proboscis, armed with spines, which it uses to pierce and hold the gut wall of its host. Acanthocephalans have complex life cycles, involving at least two hosts, which may include invertebrates, fish, amphibians, birds, and mammals. About 1420 species have been described.

Apororhynchus is a genus of small parasitic spiny-headed worms. It is the only genus in the family Apororhynchidae, which in turn is the only member of the order Apororhynchida. A lack of features commonly found in the phylum Acanthocephala suggests an evolutionary branching from the other three orders of class Archiacanthocephala; however no genetic analysis has been completed to determine the evolutionary relationship between species. The distinguishing features of this order among archiacanthocephalans is a highly enlarged proboscis which contain small hooks. The musculature around the proboscis is also structured differently in this order. This genus contains six species that are distributed globally, being collected sporadically in Hawaii, Europe, North America, South America, and Asia. These worms exclusively parasitize birds by attaching themselves around the cloaca using their hook-covered proboscis. The bird hosts are of different orders, including owls, waders, and passerines. Infestation by an Apororhynchus species may cause enteritis and anemia.

Gigantorhynchida is an order containing a single family, Gigantorhynchidae of parasitic worms that attach themselves to the intestinal wall of terrestrial vertebrates. Gigantorhynchida contains the following three genera:

<i>Gigantorhynchus</i> Genus of parasitic worms

Gigantorhynchus is a genus of Acanthocephala that parasitize marsupials, anteaters, and possibly baboons by attaching themselves to the intestines using their hook-covered proboscis. Their life cycle includes an egg stage found in host feces, a cystacanth (larval) stage in an intermediate host such as termites, and an adult stage where cystacanths mature in the intestines of the host. This genus is characterized by a cylindrical proboscis with a crown of robust hooks at the apex followed by numerous small hooks on the rest of the proboscis, a long body with pseudosegmentation, filiform lemnisci, and ellipsoid testes. The largest known specimen is the female G. ortizi with a length of around 240 millimetres (9.4 in) and a width of 2 millimetres (0.08 in). Genetic analysis on one species of Gigantorhynchus places it with the related genus Mediorhynchus in the family Gigantorhynchidae. Six species in this genus are distributed across Central and South America and possibly Zimbabwe. Infestation by a Gigantorhynchus species may cause partial obstructions of the intestines, severe lesions of the intestinal wall, and may lead to death.

<span class="mw-page-title-main">Moniliformidae</span> Family of worms

Moniliformidae is a family of parasitic spiny-headed worms. It is the only family in the Moniliformida order and contains three genera: Australiformis containing a single species, Moniliformis containing eighteen species and Promoniliformis containing a single species. Genetic analysis have determined that the clade is monophyletic despite being distributed globally. These worms primarily parasitize mammals, including humans in the case of Moniliformis moniliformis, and occasionally birds by attaching themselves into the intestinal wall using their hook-covered proboscis. The intermediate hosts are mostly cockroaches. The distinguishing features of this order among archiacanthocephalans is the presence of a cylindrical proboscis with long rows of hooks with posteriorly directed roots and proboscis retractor muscles that pierce both the posterior and ventral end or just posterior end of the receptacle. Infestation with Monoliformida species can cause moniliformiasis, an intestinal condition characterized as causing lesions, intestinal distension, perforated ulcers, enteritis, gastritis, crypt hypertrophy, goblet cell hyperplasia, and blockages.

<i>Moniliformis</i> Genus of worms

Moniliformis is a genus of parasitic worms in the Acanthocephala phylum.

Promoniliformis is a monotypic genus of acanthocephalans containing a single species, Promoniliformis ovocristatus, that infests tenrecs in Madagascar. The genus PromoniliformisDollfus and Golvan, 1963 is characterized by possessing two distinct kinds of proboscis hooks. There is only one species in this genus.

<span class="mw-page-title-main">Oligacanthorhynchidae</span> Order of thorny-headed worms

Oligacanthorhynchida is an order containing a single parasitic worm family, Oligacanthorhynchidae, that attach themselves to the intestinal wall of terrestrial vertebrates.

Arhythmacanthidae is a family of parasitic worms from the order Echinorhynchida.

Dendronucleata is a genus of small parasitic spiny-headed worms. It is the only genus in the family Dendronucleatidae. This genus contains three species that are distributed globally, being collected in North America and Asia. The distinguishing features of this genus among Archiacanthocephalans is the presence of randomly distributed dendritically branched giant hypodermic nuclei. Dendronucleata parasitize freshwater fish and a salamander by attaching themselves in the intestines using their hook covered proboscis and adhesives secreted from cement glands.

<i>Moniliformis moniliformis</i> Species of thorny-headed worm

Moniliformis moniliformis is a parasite of the Acanthocephala phylum in the family Moniliformidae. The adult worms are usually found in intestines of rodents or carnivores such as cats and dogs. The species can also infest humans, though this is rare.

Australiformis is a monotypic genus of acanthocephalans containing a single species, Australiformis semoni, that infests marsupials in Australia and New Guinea. Its body consists of a proboscis armed with hooks which it uses to pierce and hold the gut wall of its host, and a long trunk. This genus resembles species in the genus Moniliformis but is characterized by a lack of spiral muscles in the outer wall of the proboscis receptacle. The proboscis is armed with 12 rows of 13 to 15 hooks which are used to attach themselves to the small or large intestines of the host. The female worms range from 95 to 197 millimetres long, virtually all of which is the trunk, and 1.75 to 3.5 millimetres wide. There is pronounced sexual dimorphism in this species as females are around twice the size of the males whose trunks range from 46 to 80 millimetres long and 2 millimetres (0.079 in) wide. Infestation by A. semoni may cause debilitating inflammation of the stomach (gastritis) with granulomatous ulcers.

Paraprosthenorchis is a monotypic genus of acanthocephalans. It contains a single species, Paraprosthenorchis ornatus, which infests the Chinese pangolin in Vietnam.

<i>Pachysentis</i> Genus of worms

Pachysentis is a genus in Acanthocephala that parasitize primates and carnivorans. They are distributed across Africa, the Middle East, and the Americas. Pachysentis species attach themselves to the inner lining of the gastrointestinal tract of their hosts using their hook-covered proboscis. Their life cycle includes an egg stage found in host feces, a cystacanth (larval) stage in an intermediate host such as the Egyptian cobra, and an adult stage where cystacanths mature in the intestines of the host. This genus appears identical to the closely related Oncicola apart from a greater number of hooks on the proboscis. There are eleven species assigned to this genus, although P. septemserialis is of uncertain taxonomic status. The female worms range from 12 millimetres (0.47 in) long and 1.6 millimetres (0.063 in) wide in P. lauroi to 50 millimetres (2.0 in) long and 4 millimetres (0.16 in) wide in P. dollfusi. Virtually all of the length is the trunk, with a short proboscis. There is pronounced sexual dimorphism in this species as females are around twice the size of the males.

<i>Oncicola</i> Genus of worms

Oncicola is a genus of parasitic worms belonging to the family Oligacanthorhynchidae. Oncicola belongs to the phylum Acanthocephalans that include many thorny-headed worms. This family contains 12 genera including the genus Oncicola. Oncicola is a part of the phylum Acanthocephalans that include many thorny-headed worms. The name comes from the prefix onc- meaning “barbed” and -cola meaning “to inhabit” in Latin. It was named and discovered in 1916 by Travassos. These worms are defined by their parasitic nature which involves hook structures found at their front end.

Oligacanthorhynchus is a genus of parasitic worms belonging to the family Oligacanthorhynchidae.

Pararaosentis is a monotypic genus of acanthocephalans containing a single species, Pararaosentis golvani.

Raosentis is a genus of Acanthocephala that parasitize the intestine of fish.

Triaspiron is a monotypic genus of acanthocephalans containing a single species, Triaspiron aphanii.

Intraproboscis is a monotypic genus of acanthocephalans that infest African black-bellied pangolin in the Central African Republic. Its body consists of a proboscis armed with hooks which it uses to pierce and hold the gut wall of its host, and a long trunk. It contains a single species, Intraproboscis sanghae. This genus resembles species in the genus Mediorhynchus but is characterized by infesting a mammal instead of birds, and having a simple proboscis receptacle that is completely suspended within the proboscis, the passage of the retractor muscles through the receptacle into the body cavity posteriorly, absence of neck, presence of a parareceptacle structure, and a uterine vesicle. The proboscis is armed with 34–36 rows of 6 to 7 hooks anteriorly and 15–17 spinelike hooks posteriorly which are used to attach themselves to the intestines of the host. The female worms are up to 180 millimetres long, virtually all of which is the trunk, and 2 millimetres wide.

References

  1. 1 2 3 4 Cleave, H. J. Van (1916). "Acanthocephala of the Genera Centrorhynchus and Mediorhynchus (New Genus) from North American Birds". Transactions of the American Microscopical Society. 35 (4): 221–232. doi:10.2307/3221908. JSTOR   3221908.
  2. "Subject Index". The Journal of Parasitology. 45: 162–286. 1959. ISSN   0022-3395. JSTOR   3274895.
  3. 1 2 3 4 5 6 7 Amin, Omar M.; Evans, Paul; Heckmann, Richard A.; El-Naggar, Atif M. (2013). "The description of Mediorhynchus africanus n. sp. (Acanthocephala: Gigantorhynchidae) from galliform birds in Africa". Parasitology Research. 112 (8): 2897–2906. doi:10.1007/s00436-013-3461-9. PMID   23722716. S2CID   5952065.
  4. Rodríguez, S. M., Amin, O. M., Heckmann, R. A., Sharifdini, M., & D’Elía, G. (2022). Phylogeny and life cycles of the Archiacanthocephala with a note on the validity of Mediorhynchus gallinarum. Acta Parasitologica, 1-11.
  5. Nascimento Gomes, Ana Paula; Cesário, Clarice Silva; Olifiers, Natalie; de Cassia Bianchi, Rita; Maldonado, Arnaldo; Vilela, Roberto do Val (December 2019). "New morphological and genetic data of Gigantorhynchus echinodiscus (Diesing, 1851) (Acanthocephala: Archiacanthocephala) in the giant anteater Myrmecophaga tridactyla Linnaeus, 1758 (Pilosa: Myrmecophagidae)". International Journal for Parasitology: Parasites and Wildlife. 10: 281–288. doi: 10.1016/j.ijppaw.2019.09.008 . PMC   6906829 . PMID   31867208.
  6. Amin, O.M.; Sharifdini, M.; Heckmann, R.A.; Zarean, M. (2020). "New perspectives on Nephridiacanthus major (Acanthocephala: Oligacanthorhynchidae) collected from hedgehogs in Iran". Journal of Helminthology. 94: e133. doi:10.1017/S0022149X20000073. PMID   32114988. S2CID   211725160.
  7. 1 2 Schmidt, Gerald D.; Kuntz, Robert E. (1977). "Revision of Mediorhynchus van Cleave 1916 (Acanthocephala) with a Key to Species". The Journal of Parasitology. 63 (3): 500–507. doi:10.2307/3280011. JSTOR   3280011. PMID   559066.
  8. Monks, Scott (2001). "Phylogeny of the Acanthocephala based on morphological characters". Systematic Parasitology. 48 (2): 81–115. doi:10.1023/A:1006400207434. PMID   11252279. S2CID   35072952.
  9. Bush, Albert O.; Fernández, Jacqueline C.; Esch, Gerald W.; Seed, J. Richard (2001). Parasitism : the diversity and ecology of animal parasites. Cambridge, UK New York, NY: Cambridge University Press. p. 203. ISBN   0-521-66278-8. OCLC   44131774.
  10. 1 2 Amin, Omar M. (19 September 2013). "Classification of the Acanthocephala". Folia Parasitologica. 60 (4): 273–305. doi: 10.14411/fp.2013.031 . PMID   24261131.
  11. 1 2 "Mediorhynchus Van Cleave, 1916". Integrated Taxonomic Information System (ITIS). November 23, 2019. Retrieved November 23, 2019.
  12. 1 2 Studies on the helminth fauna of the Great Nicobar Island
  13. 1 2 Nickol, Brent B. (1977). "Life History and Host Specificity of Mediorhynchus centurorum Nickol 1969 (Acanthocephala: Gigantorhynchidae)". The Journal of Parasitology. 63 (1): 104–111. doi:10.2307/3280112. JSTOR   3280112. PMID   845719. S2CID   9787371.
  14. 1 2 3 4 5 6 7 8 Pfenning, A. C. (2017). Egg morphology, dispersal, and transmission in acanthocephalan parasites: integrating phylogenetic and ecological approaches.Url=https://via.library.depaul.edu/cgi/viewcontent.cgi?article=1273&context=csh_etd
  15. 1 2 George, P. V.; Nadakal, M. (1984). "Three new species of Acanthocephala (Gigantorhynchidea) from birds of Kerala". Acta Parasitologica Polonica. 29 (9–19): 97–105.
  16. 1 2 3 4 5 6 7 Smales, Lesley R. (2011). "Gigantorhynchidae (Acanthocephala) Including the Description of New Species of Mediorhynchus from Birds from the Côte d'Ivoire, Africa". Comparative Parasitology. 78 (2): 316–326. doi:10.1654/4510.1. S2CID   86686483.
  17. 1 2 3 4 Smales, L. R. (April 2002). "Species of Mediorhynchus (Acanthocephala: Gigantorhynchidae) in Australian Birds with the Description of Mediorhynchus colluricinclae n. sp". Journal of Parasitology. 88 (2): 375–381. doi:10.1645/0022-3395(2002)088[0375:SOMAGI]2.0.CO;2. PMID   12054015. S2CID   39618767.
  18. 1 2 3 4 5 6 7 8 9 10 11 12 Marchand, Bernard; Vassiliades, Georges (December 1982). "Mediorhynchus mattei sp. n. (Acanthocephala, Giganthorhynchidae) from Tockus erythrorhynchus (Aves), the Red-Beaked Hornbill, in West Africa". The Journal of Parasitology. 68 (6): 1142. doi:10.2307/3281107. JSTOR   3281107.
  19. Johnston & Edmonds, 1950 : Australian Acanthocephala n° 8. Transactions of the Royal Society of South Australia, vol.74, p.1–5 url=https://www.biodiversitylibrary.org/item/128927#page/5/mode/1up.
  20. Rudolphi, Karl Asmund (1819). Entozoorum synopsis cui accedunt mantissa duplex et indices locupletissimi. doi:10.5962/bhl.title.9157. OCLC   9091261.
  21. Carvalho, Adriano R.; Souza-Lima, Sueli; Tavares, Luiz E. R.; Luque, José L. (2008). "Relationship between biomass and parasite density of Mediorhynchus emberizae (Acanthocephala: Gigantorhynchidae) parasites of Paroaria dominicana (Passeriformes: Emberizidae) of the State of Bahia, Brazil". Revista Brasileira de Parasitologia Veterinária. 17 (2): 118–121. doi: 10.1590/S1984-29612008000200012 . PMID   18823583.
  22. 1 2 3 4 Khan, Aly; Bilqees, Fatima Mujib; Rehman, Muti-Ur (2004). "Two New Species of Genus Mediorhynchus Van Cleave, 1916 from Birds of Karachi" (PDF). Pakistan Journal of Zoology. 36 (2): 139–142.
  23. Bhalerao, G. D. (July 1937). "12. On a remarkable Acanthocephala from a Fowl in India". Proceedings of the Zoological Society of London. B107 (2): 199–203. doi:10.1111/j.1096-3642.1937.tb00002.x.
  24. 1 2 Bilqees, F. M., Khan, A., Khatoon, N., & Khatoon, S. (2007). Acanthocephala from eagle of Karachi with descriptions of two new species. Proceedings of Parasitology (Pakistan).
  25. Rising, James D.; Avise, John C. (1993). "Application of Genealogical-Concordance Principles to the Taxonomy and Evolutionary History of the Sharp-Tailed Sparrow (Ammodramus caudacutus)". The Auk. 110 (4): 844–856. doi:10.2307/4088638. JSTOR   4088638. S2CID   22137914.
  26. Moore, Donald V. (1962). "Morphology, Life History, and Development of the Acanthocephalan Mediorhynchus grandis Van Cleave, 1916". The Journal of Parasitology. 48 (1): 76–86. doi:10.2307/3275416. JSTOR   3275416.
  27. 1 2 3 Amin, Omar M.; Ha, Nguyen Van; Heckmann, Richard A. (2008). "Four New Species of Acanthocephalans from Birds in Vietnam". Comparative Parasitology. 75 (2): 200–214. doi:10.1654/4320.1. S2CID   84731328.
  28. Van Ha, N. (2015). An updated list of Acanthocephalans (Acanthocephala) from animals in Vietnam. TAP CHI SINH HOC, 37(3), 384–394.
  29. Tavakol, Sareh; Amin, Omar M.; Luus-Powell, Wilmien J.; Halajian, Ali (22 October 2015). "The acanthocephalan fauna of Iran, a check list". Zootaxa. 4033 (2): 237–258. doi:10.11646/zootaxa.4033.2.3. PMID   26624401.
  30. 1 2 Smales, Lesley R.; Halajian, Ali; Luus-Powell, Wilmien J.; Tavakol, Sareh (2018). "Acanthocephalans, Including the Description of a New Species of Mediorhynchus (Gigantorhynchidae) and a Redescription of Centrorhynchus clitorideus (Centrorhynchidae) from Vertebrate Hosts from South Africa". Comparative Parasitology. 85: 95–106. doi:10.1654/1525-2647-85.1.95. S2CID   89894606.
  31. :University of Limpopo:
  32. 1 2 Halajian, Ali; Warner, Lesley R.; Tavakol, Sareh; Smit, Nico J.; Luus-Powell, Wilmien J. (2018). "Checklist of acanthocephalan parasites of South Africa". ZooKeys (789): 1–18. doi: 10.3897/zookeys.789.27710 . PMC   6193052 . PMID   30344432.
  33. Bolette, David P. (1990). "Intermediate Host of Mediorhynchus orientalis (Acanthocephala: Gigantorhynchidae)". The Journal of Parasitology. 76 (4): 575–577. doi:10.2307/3282844. JSTOR   3282844. PMID   2380868.
  34. Llanos-Soto, Sebastián; Muñoz, Braulio; Moreno, Lucila; Landaeta-Aqueveque, Carlos; Kinsella, John Mike; Mironov, Sergey; Cicchino, Armando; Barrientos, Carlos; Torres-Fuentes, Gonzalo; González-Acuña, Daniel (2017). "External and gastrointestinal parasites of the rufous-collared sparrow Zonotrichia capensis (Passeriformes, Emberizidae) in Chile". Revista Brasileira de Parasitologia Veterinária. 26 (3): 314–322. doi: 10.1590/s1984-29612017043 . hdl: 11336/76903 . PMID   28977245.
  35. 1 2 3 4 5 6 7 8 Golvan, Yves-J. (1962). "Le phylum des Acanthocephala. (Quatrième note). La classe des Archiacanthocephala (A. Meyer 1931)" (PDF). Annales de Parasitologie Humaine et Comparée. 37 (1–2): 1–72. doi: 10.1051/parasite/1962371001 . PMID   13900032 . Retrieved February 29, 2020.
  36. Byrd, Elon E.; Kellogg, Forest E. (1971). "Mediorhynchus bakeri, a New Acanthocephalan (Gigantorhynchidae) from the Bob-White, Colinus virginianus virginianus (L.)". The Journal of Parasitology. 57 (1): 137–142. doi:10.2307/3277769. JSTOR   3277769.
  37. 1 2 Johnston & Edmonds, 1947 : Australian Acanthocephala n° 6. Records of the South Australian Museum, volume 8, pages 555–562 url=).
  38. 1 2 Moya, Rocío; Martínez, Rosa; Tantaleán, Manuel (9 February 2012). "Nueva especie de Mediorhynchus (Acanthocephala, Gigantorhynchidae) en Turdus chiguanco (Turdidae) de Junín, Perú" [New species of Mediorhynchus (Acanthocephala, Gigantorhynchidae) in Turdus chiguanco (Turdidae) from Junín, Peru]. Revista Peruana de Biología (in Spanish). 18 (3): 299–302. doi: 10.15381/rpb.v18i3.441 . Gale   A298173137.
  39. Magalhães Pinto, Roberto; Knoff, Marcelo; Torres Gomes, Cláudia; Noronha, Dely (2006). "Helminths of the Spotted Nothura, Nothura maculosa (Temminck, 1815) (Aves, Tinamidae) in South America". Parasitología Latinoamericana. 61 (3–4). doi: 10.4067/S0717-77122006000200009 .
  40. Soto, Marta; Moreno, Lucila; Sepúlveda, María S.; Kinsella, J. Mike; Mironov, Sergei; González-Acuña, Daniel (1 December 2013). "First records of parasites from the Long-tailed Meadowlark Sturnella loyca (Passeriformes: Icteridae) from the Biobío Region, Chile". Revista Mexicana de Biodiversidad. 84 (4): 1316–1320. doi: 10.7550/rmb.34112 .
  41. 1 2 3 Bechev, D., & Georgiev, D. Review of species of the phylum Acanthocephala recorded from Vrachanska Planina Mountains.
  42. Tubangui, M. A. (1935). Additional notes on Philippine Acanthocephala. Philippine Journal of Science, 56(1), 13–17.
  43. Baker, J. B.; Hamon, J. H. (1967). "Some intestinal parasites of robins from Marion County, Indiana". Indiana Academy of Science. 77: 417–419.
  44. 1 2 Tubangui, M. A. (1933). Notes on Acanthocephala in the Philippines. Philippine Journal of Science, 50(2), 115–128.
  45. Schmidt, Gerold D.; Canaris, Albert G. (1967). "Acanthocephala from Kenya with Descriptions of Two New Species". The Journal of Parasitology. 53 (3): 634–7. doi:10.2307/3276730. JSTOR   3276730. PMID   6026855.
  46. Antonio María La Porta, « Acantocefali della Nuova Caledonia e delle isole Loyalty », ?, 1913, p. 165-170. language=italian
  47. CDC’s Division of Parasitic Diseases and Malaria (April 11, 2019). "Acanthocephaliasis". www.cdc.gov. Center for Disease Control. Archived from the original on 8 June 2023. Retrieved July 17, 2023.
  48. 1 2 Mathison, BA; et al. (2021). "Human Acanthocephaliasis: a Thorn in the Side of Parasite Diagnostics". J Clin Microbiol. 59 (11): e02691-20. doi:10.1128/JCM.02691-20. PMC   8525584 . PMID   34076470.
  49. Schmidt, G.D. (1985). "Development and life cycles". In Crompton, D.W.T.; Nickol, B.B. (eds.). Biology of the Acanthocephala (PDF). Cambridge: Cambridge Univ. Press. pp. 273–305. Archived (PDF) from the original on 22 July 2023. Retrieved 16 July 2023.