Music tracker

Last updated
OpenMPT, a tracker running in Microsoft Windows. OpenMPT 1.31.12 Screenshot.png
OpenMPT, a tracker running in Microsoft Windows.

A music tracker (sometimes referred to as a tracker for short) is a type of music sequencer software for creating music. The music is represented as discrete musical notes positioned in several channels at chronological positions on a vertical timeline. [1] A music tracker's user interface is traditionally number based. Notes, parameter changes, effects and other commands are entered with the keyboard into a grid of fixed time slots as codes consisting of letters, numbers and hexadecimal digits. [2] Separate patterns have independent timelines; a complete song consists of a master list of repeated patterns.

Contents

Later trackers departed from solely using module files, adding other options both to the sound synthesis (hosting generic synthesizers and effects or MIDI output) and to the sequencing (MIDI input and recording), effectively becoming general purpose sequencers with a different user interface.

In the 2010s, tracker music is still featured in demoscene products for old hardware platforms and demoparties have often separate tracker music competitions. Tracker music may also be used in games which borrow aesthetics from past decades.

History

1987: Origins on the Amiga

The term tracker derives from Ultimate Soundtracker (the first tracker software [3] ) written by Karsten Obarski and released in 1987 by EAS Computer Technik for the Amiga. [4] Ultimate Soundtracker was a commercial product, but soon shareware clones such as NoiseTracker (1989 [5] ) appeared as well. The general concept of step-sequencing samples numerically, as used in trackers, is also found in the Fairlight CMI sampling workstation of the early 1980s. Some early tracker-like programs appeared for the MSX (Yamaha CX5M) and Commodore 64, before 1987, such as Chris Huelsbeck's SoundMonitor, but these did not feature sample playback, instead playing notes on the computer's internal synthesizer. Later, programs like Rock Monitor also supported additional sample playback, usually with short drum samples loaded in RAM memory.

The first trackers supported four pitch and volume modulated channels of 8-bit PCM samples, a limitation derived from the Amiga's Paula audio chipset and the commonplace 8SVX format used to store sampled sound. However, since the notes were samples, the limitation was less important than those of synthesizing music chips. [6]

1990s: MS-DOS versions

During the 1990s, tracker musicians gravitated to the PC as software production in general switched from the Amiga platform to the PC. Although the IBM and compatibles initially lacked the hardware sound processing capabilities of the Amiga, with the advent of the Sound Blaster line from Creative, PC audio slowly began to approach CD Quality (44.1 kHz/16 bit/Stereo) with the release of the SoundBlaster 16.

Another sound card popular on the PC tracker scene was the Gravis Ultrasound, which continued the hardware mixing tradition, with 32 internal channels and onboard memory for sample storage. For a time, it offered unparalleled sound quality and became the choice of discerning tracker musicians. Understanding that the support of tracker music would benefit sales, Gravis gave away some 6000 GUS cards to participants. Coupled with excellent developer documentation, this gesture quickly prompted the GUS to become an integral component of many tracking programs and software. Inevitably, the balance was largely redressed with the introduction of the Sound Blaster AWE32 and its successors, which also featured on-board RAM and wavetable (or sample table) mixing.

The responsibility for audio mixing passed from hardware to software (the main CPU) which gradually enabled the use of more channels. From the typical 4 MOD channels of the Amiga, the limit had moved to 7 with TFMX players and 8, first with Oktalyzer and later with the vastly more popular OctaMED (Amiga, 1989), then 32 with ScreamTracker 3 (PC, 1994) and 16 with FastTracker 2 (PC, 1994) and on to 64 with Impulse Tracker (PC, 1995) and MED SoundStudio (updated version of OctaMED). An Amiga tracker called Symphonie Pro even supported 256 channels.

As such, hardware mixing did not last. As processors got faster and acquired special multimedia processing abilities (e.g. MMX) and companies began to push Hardware Abstraction Layers, like DirectX, the AWE and GUS range became obsolete. DirectX, WDM and, now more commonly, ASIO, deliver high-quality sampled audio irrespective of hardware brand.

There was also a split off from the sample based trackers taking advantage of the OPL2 and OPL3 chips of the Sound Blaster series. All Sound Tracker was able to combine both the FM synthesis of the OPL chips and the sample based synthesis of the EMU-8000 chips in the Sound Blaster AWE series of cards as well as MIDI output to any additional hardware of choice.

Jeskola Buzz is a modular music studio developed from 1997 to 2000 for Microsoft Windows using a tracker as its sequencer where the sounds were produced by virtual machines (Buzzmachines) such as signal generators, synthesizer emulators, drum computers, samplers, effects and control machines, that where connected in a modular setup. Each machine would have its own tracker, drum machines would use a tracker-like drum pattern editor and effect and control machines could be automated tracker-like via tables of parameters.

2000s: Multiple platforms

Schism Tracker with a text mode GUI, playing a module from the video game Bejeweled 2 by Finnish composer Skaven. Schism Tracker - Beyond The Network.png
Schism Tracker with a text mode GUI, playing a module from the video game Bejeweled 2 by Finnish composer Skaven.

Tracker music could be found in computer games of the late 1990s and early 2000s, such as the Unreal series, Deus Ex , Crusader: No Remorse , Jazz Jackrabbit and Uplink . Some of the early Amiga trackers such as Protracker (1990) and OctaMED have received various updates, mostly for porting to other platforms. Protracker having resumed development in 2004, with plans for releasing version 5 to Windows and AmigaOS, but only version 4.0 beta 2 for AmigaOS has been released.

Renoise, a popular tracker in the 2000s and 2010s. Renoise 2.6.png
Renoise, a popular tracker in the 2000s and 2010s.

During 2007, Renoise (PC, 2002) and OpenMPT (PC, 1997) were presented in Computer Music Magazine as professional and inexpensive alternative to other music production software. [7]

Modern trackers include, but not limited to Deflemask, [8] Famitracker, [9] VGM Music Maker, [10] Furnace [11] (which currently is the only tracker allowing multiple sound chips from multiple systems to be played simultaneously (for example, Commodore 64 and PC-98 together.)), and SunVox [12] (Music Tracker with modular synth engine and a free form, dynamic length pattern timeline system)

Hardware

The earliest trackers existed to get closer to the hardware of a given machine, allowing memory-light playback of music ideal for games and similar programs. [13] Keeping in theme with this philosophy, a few "hardware trackers" have emerged: specialized hardware designed specifically to host tracker software, in turn designed to exploit the hardware of the machine. These hardware trackers are largely inspired by LittleSoundDJ, [14] [15] a tracker created for the original Game Boy.

The first such hardware tracker released was the NerdSeq in 2018, a hybrid tracker-sequencer for Eurorack systems. As a module of said system, it cannot be used alone, and the "tracker" portion of the device is simply used as an interface to sequence, while the hardware is used to handle sampling and other functions.

The first standalone hardware tracker released was the Polyend Tracker in 2020, a USB-powered device with all the functions of a software tracker. It was met with mostly positive critical reception, [16] [17] with critics citing a modest price point, standalone all-in-one capability, and intuitive controls. In 2021, DirtyWave released the M8 Tracker, a portable tracker that is more heavily inspired by Little Sound DJ. [18]

Terminology

There are several elements common to any tracker program: samples, notes, effects, tracks (or channels), patterns, and orders.

A sample is a small digital sound file of an instrument, voice, or other sound effect. Most trackers allow a part of the sample to be looped, simulating a sustain of a note.

A note designates the frequency at which the sample is played back. By increasing or decreasing the playback speed of a digital sample, the pitch is raised or lowered, simulating instrumental notes (e.g., C, C#, D, etc.).

An effect is a special function applied to a particular note. These effects are then applied during playback through either hardware or software. Common tracker effects include volume, portamento, vibrato, retrigger, and arpeggio.

A track (or channel) is a space where one sample is played back at a time. Whereas the original Amiga trackers only provided four tracks, the hardware limit, modern trackers can mix a virtually unlimited number of channels into one sound stream through software mixing. Tracks have a fixed number of "rows" on which notes and effects can be placed (most trackers lay out tracks in a vertical fashion). Tracks typically contain 64 rows and 16 beats, although the beats, rows and tempo can be increased or decreased to the composer's taste.

A basic drum set could thus be arranged by putting a bass drum at rows 0, 4, 8, 12 etc. of one track and putting some hi hat at rows 2, 6, 10, 14 etc. of a second track. Of course, bass and hats could be interleaved on the same track, if the samples are short enough. If not, the previous sample is usually stopped when the next one begins. Some modern trackers simulate polyphony in a single track by setting the "new note action" of each instrument to cut, continue, fade out, or release, opening new mixing channels as necessary.

A pattern is a group of simultaneously played tracks that represents a full section of the song. A pattern usually represents an even number of measures of music composition.

An order is part of a sequence of patterns that defines the layout of a song. Patterns can be repeated across multiple orders to save tracking time and file space.

There are also some tracker-like programs that utilize tracker-style sequencing schemes, while using real-time sound synthesis instead of samples. Many of these programs are designed for creating music for a particular synthesizer chip such as the OPL chips of the Adlib and SoundBlaster sound cards, or the sound chips of classic home computers.

Tracker music is typically stored in module files where the song data and samples are encapsulated in a single file. Several module file formats are supported by popular audio players. Well-known formats include MOD, MED, S3M, XM and IT. Many of these formats can also be imported into existing trackers, allowing to view arrangement, instrumentation and the use of effect commands. This also makes the self-teaching of music composition using trackers easier and allows to extract instruments for later use in own songs, which was very common. [19]

See also

Related Research Articles

<span class="mw-page-title-main">MIDI</span> Connection standard for electronic musical instruments

MIDI is a technical standard that describes a communication protocol, digital interface, and electrical connectors that connect a wide variety of electronic musical instruments, computers, and related audio devices for playing, editing, and recording music.

<span class="mw-page-title-main">Sound card</span> Expansion card that provides input and output of audio signals

A sound card is an internal expansion card that provides input and output of audio signals to and from a computer under the control of computer programs. The term sound card is also applied to external audio interfaces used for professional audio applications.

<span class="mw-page-title-main">Chiptune</span> Style of synthesized electronic music

Chiptune, also called 8-bit music, is a style of electronic music made using the programmable sound generator (PSG) sound chips or synthesizers in vintage arcade machines, computers and video game consoles. The term is commonly used to refer to tracker format music using extremely basic and small samples that an old computer or console could produce, as well as music that combines PSG sounds with modern musical styles. It has been described as "an interpretation of many genres" since any existing song can be arranged in a chiptune style defined more by choice of instrument and timbre than specific style elements.

<span class="mw-page-title-main">MOS Technology 6581</span> MOS Technology sound chip

The MOS Technology 6581/8580 SID is the built-in programmable sound generator chip of the Commodore CBM-II, Commodore 64, Commodore 128, and MAX Machine home computers.

Video game music (VGM) is the soundtrack that accompanies video games. Early video game music was once limited to sounds of early sound chips, such as programmable sound generators (PSG) or FM synthesis chips. These limitations have led to the style of music known as chiptune, which became the sound of the first video games.

<span class="mw-page-title-main">Pro Tools</span> Digital audio workstation

Pro Tools is a digital audio workstation (DAW) developed and released by Avid Technology for Microsoft Windows and macOS. It is used for music creation and production, sound for picture and, more generally, sound recording, editing, and mastering processes.

<span class="mw-page-title-main">Digital audio workstation</span> Electronic device or application software used for recording, editing and producing audio files

A digital audio workstation is an electronic device or application software used for recording, editing and producing audio files. DAWs come in a wide variety of configurations from a single software program on a laptop, to an integrated stand-alone unit, all the way to a highly complex configuration of numerous components controlled by a central computer. Regardless of configuration, modern DAWs have a central interface that allows the user to alter and mix multiple recordings and tracks into a final produced piece.

<span class="mw-page-title-main">Audio editing software</span> Computer system for manipulating audio

Audio editing software is any software or computer program which allows editing and generating audio data. Audio editing software can be implemented completely or partly as a library, as a computer application, as a web application, or as a loadable kernel module. Wave editors are digital audio editors. There are many sources of software available to perform this function. Most can edit music, apply effects and filters, and adjust stereo channels.

OctaMED is a music tracker for the Amiga, written by Teijo Kinnunen. The first version, 1.12, was released in 1989 under the name MED, which stands for Music EDitor. In April 1990, version 2.00 was released with MIDI support as the main improvement. In 1991 the first version with the name OctaMED was released, so-called as it could replay eight independent channels on the Amiga's four-channel sound chip. This was also the first commercial version of the software. The publisher had previously been RBF Software of Southampton, UK which was run by Ray Burt-Frost. The current publisher is A-EON Technology Ltd.

<span class="mw-page-title-main">PC speaker</span> Internal loudspeaker built into some (older) IBM PC-compatible computers

A PC speaker is a loudspeaker built into some IBM PC compatible computers. The first IBM Personal Computer, model 5150, employed a standard 2.25 inch magnetic driven (dynamic) speaker. More recent computers use a tiny moving-iron or piezo speaker instead. The speaker allows software and firmware to provide auditory feedback to a user, such as to report a hardware fault. A PC speaker generates waveforms using the programmable interval timer, an Intel 8253 or 8254 chip.

<span class="mw-page-title-main">FastTracker 2</span> Audio tracker for DOS

FastTracker 2 is a music tracker created by Fredrik "Mr. H" Huss and Magnus "Vogue" Högdahl, two members of the demogroup Triton who set about releasing their own tracker after breaking into the scene in 1992 and winning several demo competitions. The source code of FastTracker 2 is written in Pascal using Borland Pascal 7 and TASM. The program works natively under MS-DOS.

The digital sound revolution refers to the widespread adoption of digital audio technology in the computer industry beginning in the 1980s.

MOD is a computer file format used primarily to represent music, and was the first module file format. MOD files use the “.MOD” file extension, except on the Amiga which doesn't rely on filename extensions; instead, it reads a file's header to determine filetype. A MOD file contains a set of instruments in the form of samples, a number of patterns indicating how and when the samples are to be played, and a list of what patterns to play in what order.

<span class="mw-page-title-main">Gravis UltraSound</span> Sound card for IBM PC compatibles

The Gravis UltraSound or GUS is a sound card for the IBM PC compatible system platform, made by Canada-based Advanced Gravis Computer Technology Ltd. It was very popular in the demoscene during the 1990s.

<span class="mw-page-title-main">Module file</span> Family of file formats

Module file is a family of music file formats originating from the MOD file format on Amiga systems used in the late 1980s. Those who produce these files and listen to them form the worldwide MOD scene, a part of the demoscene subculture.

<span class="mw-page-title-main">Roland MT-32</span> Roland MT-32 Multi-Timbre Sound Module

The Roland MT-32 Multi-Timbre Sound Module is a MIDI synthesizer module first released in 1987 by Roland Corporation. It was originally marketed to amateur musicians as a budget external synthesizer with an original list price of $695. However, it became more famous along with its compatible modules as an early de facto standard in computer music. Since it was made prior to the release of the General MIDI standard, it uses its own proprietary format for MIDI file playback.

<span class="mw-page-title-main">Ultimate Soundtracker</span>

The Ultimate Soundtracker, or Soundtracker for short, is a music tracker program for the Amiga. It is the creation of Karsten Obarski, a German software developer and composer at EAS, a video game development company.

Moonsound is the name of a sound card released for the MSX home-computer system at the Tilburg Computer Fair in 1995. It was designed by electronic engineer Henrik Gilvad and produced by Sunrise Swiss on a semi-hobby basis.

S3M is a module file format, the successor to the STM format used by the original Scream Tracker. Both formats are based on the original MOD format used on the Amiga computer.

This article deals with music software created for the Amiga line of computers and covers the AmigaOS operating system and its derivates AROS and MorphOS and is a split of main article Amiga software. See also related articles Amiga productivity software, Amiga programming languages, Amiga Internet and communications software and Amiga support and maintenance software for other information regarding software that run on Amiga.

References

  1. Mason McCuskey (2003). Beginning Game Audio Programming. Premier Press. p. 168. ISBN   978-1592000296.
  2. Gallagher, Mitch (2009). The Music Tech Dictionary: A Glossary of Audio-Related Terms and Technologies. Course Technology. ISBN   9781598639148 . Retrieved September 10, 2014.
  3. Olga Goriunova (2012). Art Platforms and Cultural Production on the Internet. Routledge. p. 162. ISBN   978-0-415-89310-7 . Retrieved 2014-09-13.
  4. Matsuoka, Claudio (2007-11-04). "Tracker History Graphing Project". helllabs.org. Archived from the original on 2011-07-26. Retrieved 2011-01-29.
  5. "Noisetracker fyller 25 år". TechWorld. Retrieved 29 March 2023.
  6. Commodore's SID or General Instruments' venerable AY-3-8912 and Yamaha's compatible YM2149.
  7. "Top Trackers". Computer Music Magazine (113). Future Publishing Ltd. June 2007. Retrieved 11 January 2017. Tracker! The amazing free music software giving the big boys a run for their money.
  8. "DefleMask – The best Chiptune tracker" . Retrieved 29 March 2023.
  9. "FamiTracker". famitracker.com. Archived from the original on 22 March 2023. Retrieved 29 March 2023.
  10. "Creating Music and Sound for the Sega Genesis/Mega-Drive: A Primer for Using the VGM Music Maker". 30 March 2021.
  11. "Furnace (Chiptune tracker)". GitHub .
  12. "WarmPlace.ru. SunVox Modular Music Studio". www.warmplace.ru. Retrieved 2023-10-12.
  13. Obarski, Karsten. "Amiga Music Preservation - Karsten Obarski". Amiga Music Preservation. Retrieved 27 April 2023.
  14. "Nerdsynth - XOR Electronics". XOR Electronics. Retrieved 27 April 2023.
  15. "Dirtywave". Dirtywave. Retrieved 27 April 2023.
  16. Truss, Si (22 May 2020). "Polyend Tracker review | Music Radar". Music Radar. Retrieved 27 April 2023.
  17. O'Brien, Terrence. "Polyend Tracker review: A powerful but confounding groovebox". Engadget. Retrieved 27 April 2023.
  18. Synth Anatomy. "DirtyWave M8, Battery-Operated Handheld Synth & Tracker". Synth Anatomy. Retrieved 27 April 2024.
  19. Leonard, Andrew (1999-04-29). "Mod love". Salon.com . Salon Media Group. Archived from the original on 2012-10-25. Retrieved 2010-05-17. You get to see exactly how the song was put together: what samples were used, how they were played, what instruments worked together to create certain sections.

Further reading