Robotics conventions

Last updated


Lines in robotics are used for the following:

When using such line it is needed to have conventions for the representations so they are clearly defined. This article discusses several of these methods.

Contents

Non-minimal vector coordinates

A line is completely defined by the ordered set of two vectors:

Each point on the line is given a parameter value that satisfies: . The parameter t is unique once and are chosen.
The representation is not minimal, because it uses six parameters for only four degrees of freedom.
The following two constraints apply:

Plücker coordinates

Arthur Cayley and Julius Plücker introduced an alternative representation using two free vectors. This representation was finally named after Plücker.
The Plücker representation is denoted by . Both and are free vectors: represents the direction of the line and is the moment of about the chosen reference origin. ( is independent of which point on the line is chosen!)
The advantage of the Plücker coordinates is that they are homogeneous.
A line in Plücker coordinates has still four out of six independent parameters, so it is not a minimal representation. The two constraints on the six Plücker coordinates are

Minimal line representation

A line representation is minimal if it uses four parameters, which is the minimum needed to represent all possible lines in the Euclidean Space (E³).

Denavit–Hartenberg line coordinates

Jaques Denavit and Richard S. Hartenberg presented the first minimal representation for a line which is now widely used. The common normal between two lines was the main geometric concept that allowed Denavit and Hartenberg to find a minimal representation. Engineers use the Denavit–Hartenberg convention(D–H) to help them describe the positions of links and joints unambiguously. Every link gets its own coordinate system. There are a few rules to consider in choosing the coordinate system:

  1. the -axis is in the direction of the joint axis
  2. the -axis is parallel to the common normal:
    If there is no unique common normal (parallel axes), then (below) is a free parameter.
  3. the -axis follows from the - and -axis by choosing it to be a right-handed coordinate system.

Once the coordinate frames are determined, inter-link transformations are uniquely described by the following four parameters:

Hayati–Roberts line coordinates

The Hayati–Roberts line representation, denoted , is another minimal line representation, with parameters:

This representation is unique for a directed line. The coordinate singularities are different from the DH singularities: it has singularities if the line becomes parallel to either the or axis of the world frame.

Product of exponentials formula

The product of exponentials formula represents the kinematics of an open-chain mechanism as the product of exponentials of twists, and may be used to describe a series of revolute, prismatic, and helical joints. [1]

See also

Related Research Articles

<span class="mw-page-title-main">Acceleration</span> Rate of change of velocity

In mechanics, acceleration is the rate of change of the velocity of an object with respect to time. Acceleration is one of several components of kinematics, the study of motion. Accelerations are vector quantities. The orientation of an object's acceleration is given by the orientation of the net force acting on that object. The magnitude of an object's acceleration, as described by Newton's Second Law, is the combined effect of two causes:

Kinematics is a subfield of physics and mathematics, developed in classical mechanics, that describes the motion of points, bodies (objects), and systems of bodies without considering the forces that cause them to move. Kinematics, as a field of study, is often referred to as the "geometry of motion" and is occasionally seen as a branch of both applied and pure mathematics since it can be studied without considering the mass of a body or the forces acting upon it. A kinematics problem begins by describing the geometry of the system and declaring the initial conditions of any known values of position, velocity and/or acceleration of points within the system. Then, using arguments from geometry, the position, velocity and acceleration of any unknown parts of the system can be determined. The study of how forces act on bodies falls within kinetics, not kinematics. For further details, see analytical dynamics.

<span class="mw-page-title-main">Aircraft flight dynamics</span> Science of air vehicle orientation and control in three dimensions

Flight dynamics is the science of air vehicle orientation and control in three dimensions. The three critical flight dynamics parameters are the angles of rotation in three dimensions about the vehicle's center of gravity (cg), known as pitch, roll and yaw. These are collectively known as aircraft attitude, often principally relative to the atmospheric frame in normal flight, but also relative to terrain during takeoff or landing, or when operating at low elevation. The concept of attitude is not specific to fixed-wing aircraft, but also extends to rotary aircraft such as helicopters, and dirigibles, where the flight dynamics involved in establishing and controlling attitude are entirely different.

<span class="mw-page-title-main">Inverse kinematics</span> Computing joint values of a kinematic chain from a known end position

In computer animation and robotics, inverse kinematics is the mathematical process of calculating the variable joint parameters needed to place the end of a kinematic chain, such as a robot manipulator or animation character's skeleton, in a given position and orientation relative to the start of the chain. Given joint parameters, the position and orientation of the chain's end, e.g. the hand of the character or robot, can typically be calculated directly using multiple applications of trigonometric formulas, a process known as forward kinematics. However, the reverse operation is, in general, much more challenging.

<span class="mw-page-title-main">Frenet–Serret formulas</span> Formulas in differential geometry

In differential geometry, the Frenet–Serret formulas describe the kinematic properties of a particle moving along a differentiable curve in three-dimensional Euclidean space , or the geometric properties of the curve itself irrespective of any motion. More specifically, the formulas describe the derivatives of the so-called tangent, normal, and binormal unit vectors in terms of each other. The formulas are named after the two French mathematicians who independently discovered them: Jean Frédéric Frenet, in his thesis of 1847, and Joseph Alfred Serret, in 1851. Vector notation and linear algebra currently used to write these formulas were not yet available at the time of their discovery.

In geometry, Plücker coordinates, introduced by Julius Plücker in the 19th century, are a way to assign six homogeneous coordinates to each line in projective 3-space, . Because they satisfy a quadratic constraint, they establish a one-to-one correspondence between the 4-dimensional space of lines in and points on a quadric in . A predecessor and special case of Grassmann coordinates, Plücker coordinates arise naturally in geometric algebra. They have proved useful for computer graphics, and also can be extended to coordinates for the screws and wrenches in the theory of kinematics used for robot control.

Screw theory is the algebraic calculation of pairs of vectors, such as angular and linear velocity, or forces and moments, that arise in the kinematics and dynamics of rigid bodies.

<span class="mw-page-title-main">Four-bar linkage</span> Mechanical linkage consisting of four links connected by joints in a loop

In the study of mechanisms, a four-bar linkage, also called a four-bar, is the simplest closed-chain movable linkage. It consists of four bodies, called bars or links, connected in a loop by four joints. Generally, the joints are configured so the links move in parallel planes, and the assembly is called a planar four-bar linkage. Spherical and spatial four-bar linkages also exist and are used in practice.

<span class="mw-page-title-main">Linkage (mechanical)</span> Assembly of systems connected to manage forces and movement

A mechanical linkage is an assembly of systems connected so as to manage forces and movement. The movement of a body, or link, is studied using geometry so the link is considered to be rigid. The connections between links are modeled as providing ideal movement, pure rotation or sliding for example, and are called joints. A linkage modeled as a network of rigid links and ideal joints is called a kinematic chain.

<span class="mw-page-title-main">Screw axis</span> Geometric axis of rotation and translation

A screw axis is a line that is simultaneously the axis of rotation and the line along which translation of a body occurs. Chasles' theorem shows that each Euclidean displacement in three-dimensional space has a screw axis, and the displacement can be decomposed into a rotation about and a slide along this screw axis.

<span class="mw-page-title-main">Dual quaternion</span> Eight-dimensional algebra over the real numbers

In mathematics, the dual quaternions are an 8-dimensional real algebra isomorphic to the tensor product of the quaternions and the dual numbers. Thus, they may be constructed in the same way as the quaternions, except using dual numbers instead of real numbers as coefficients. A dual quaternion can be represented in the form A + εB, where A and B are ordinary quaternions and ε is the dual unit, which satisfies ε2 = 0 and commutes with every element of the algebra. Unlike quaternions, the dual quaternions do not form a division algebra.

<span class="mw-page-title-main">Forward kinematics</span> Computing a robots end-effector position from joint values and kinematic equations

In robot kinematics, forward kinematics refers to the use of the kinematic equations of a robot to compute the position of the end-effector from specified values for the joint parameters.

In classical mechanics, a kinematic pair is a connection between two physical objects that imposes constraints on their relative movement (kinematics). German engineer Franz Reuleaux introduced the kinematic pair as a new approach to the study of machines that provided an advance over the notion of elements consisting of simple machines.

<span class="mw-page-title-main">Kinematic chain</span> Mathematical model for a mechanical system

In mechanical engineering, a kinematic chain is an assembly of rigid bodies connected by joints to provide constrained motion that is the mathematical model for a mechanical system. As the word chain suggests, the rigid bodies, or links, are constrained by their connections to other links. An example is the simple open chain formed by links connected in series, like the usual chain, which is the kinematic model for a typical robot manipulator.

<span class="mw-page-title-main">Denavit–Hartenberg parameters</span> Convention for attaching reference frames to links of a kinematic chain

In mechanical engineering, the Denavit–Hartenberg parameters are the four parameters associated with a particular convention for attaching reference frames to the links of a spatial kinematic chain, or robot manipulator.

<span class="mw-page-title-main">Mechanism (engineering)</span> Device which converts input forces and motion to output forces and motion

In engineering, a mechanism is a device that transforms input forces and movement into a desired set of output forces and movement. Mechanisms generally consist of moving components which may include Gears and gear trains; Belts and chain drives; cams and followers; Linkages; Friction devices, such as brakes or clutches; Structural components such as a frame, fasteners, bearings, springs, or lubricants; Various machine elements, such as splines, pins, or keys.

<span class="mw-page-title-main">Common normal (robotics)</span>

In robotics the common normal of two non-intersecting joint axes is a line perpendicular to both axes.

Kinematics equations are the constraint equations of a mechanical system such as a robot manipulator that define how input movement at one or more joints specifies the configuration of the device, in order to achieve a task position or end-effector location. Kinematics equations are used to analyze and design articulated systems ranging from four-bar linkages to serial and parallel robots.

The Robotics Toolbox is MATLAB toolbox software that supports research and teaching into arm-type and mobile robotics. While the Robotics Toolbox is free software, it requires the proprietary MATLAB environment in order to execute. The Toolbox forms the basis of the exercises in several textbooks.

The product of exponentials (POE) method is a robotics convention for mapping the links of a spatial kinematic chain. It is an alternative to Denavit–Hartenberg parameterization. While the latter method uses the minimal number of parameters to represent joint motions, the former method has a number of advantages: uniform treatment of prismatic and revolute joints, definition of only two reference frames, and an easy geometric interpretation from the use of screw axes for each joint.

References

  1. Sastry, Richard M. Murray; Zexiang Li; S. Shankar (1994). A mathematical introduction to robotic manipulation (PDF) (1. [Dr.] ed.). Boca Raton, Fla.: CRC Press. ISBN   9780849379819.{{cite book}}: CS1 maint: multiple names: authors list (link)