This article has multiple issues. Please help improve it or discuss these issues on the talk page . (Learn how and when to remove these template messages)
|
Operating system | Microsoft Windows |
---|---|
Type | Kernel |
In Windows NT operating systems, the System Idle Process contains one or more kernel threads which run when no other runnable thread can be scheduled on a CPU. In a multiprocessor system, there is one idle thread associated with each CPU core. For a system with hyperthreading enabled, there is an idle thread for each logical processor.
The primary purpose of the idle process and its threads is to eliminate what would otherwise be a special case in the scheduler. Without the idle threads, there could be cases when no threads were runnable (or "Ready" in terms of Windows scheduling states). Since the idle threads are always in a Ready state (if not already Running), this can never happen. Thus whenever the scheduler is called due to the current thread leaving its CPU, another thread can always be found to run on that CPU, even if it is only the CPU's idle thread. The CPU time attributed to the idle process is therefore indicative of the amount of CPU time that is not needed or wanted by any other threads in the system.
The scheduler treats the idle threads as special cases in terms of thread scheduling priority. The idle threads are scheduled as if they each had a priority lower than can be set for any ordinary thread.
Because of the idle process's function, its CPU time measurement (visible through, for example, Windows Task Manager) may make it appear to users that the idle process is monopolizing the CPU. However, the idle process does not use up computer resources (even when stated to be running at a high percent). Its CPU time "usage" is a measure of how much CPU time is not being used by other threads.
In Windows 2000 and later the threads in the System Idle Process are also used to implement CPU power saving. The exact power saving scheme depends on the operating system version and on the hardware and firmware capabilities of the system in question. For instance, on x86 processors under Windows 2000, the idle thread will run a loop of halt instructions, which causes the CPU to turn off many internal components until an interrupt request arrives. Later versions of Windows implement more complex CPU power saving methods. On these systems the idle thread will call routines in the Hardware Abstraction Layer to reduce CPU clock speed or to implement other power-saving mechanisms.
There are more detailed sources of such information available through Windows' performance monitoring system (accessible with the perfmon program), which includes more finely grained categorization of CPU usage. A limited subset of the CPU time categorization is also accessible through the Task Manager, which can display CPU usage by CPU, and categorized by time spent in user vs. kernel code.
In computing, multitasking is the concurrent execution of multiple tasks over a certain period of time. New tasks can interrupt already started ones before they finish, instead of waiting for them to end. As a result, a computer executes segments of multiple tasks in an interleaved manner, while the tasks share common processing resources such as central processing units (CPUs) and main memory. Multitasking automatically interrupts the running program, saving its state and loading the saved state of another program and transferring control to it. This "context switch" may be initiated at fixed time intervals, or the running program may be coded to signal to the supervisory software when it can be interrupted.
In computing, a context switch is the process of storing the state of a process or thread, so that it can be restored and resume execution at a later point, and then restoring a different, previously saved, state. This allows multiple processes to share a single central processing unit (CPU), and is an essential feature of a multiprogramming or multitasking operating system. In a traditional CPU, each process - a program in execution - utilizes the various CPU registers to store data and hold the current state of the running process. However, in a multitasking operating system, the operating system switches between processes or threads to allow the execution of multiple processes simultaneously. For every switch, the operating system must save the state of the currently running process, followed by loading the next process state, which will run on the CPU. This sequence of operations that stores the state of the running process and the loading of the following running process is called a context switch.
An operating system (OS) is system software that manages computer hardware and software resources, and provides common services for computer programs.
OS-9 is a family of real-time, process-based, multitasking, multi-user operating systems, developed in the 1980s, originally by Microware Systems Corporation for the Motorola 6809 microprocessor. It was purchased by Radisys Corp in 2001, and was purchased again in 2013 by its current owner Microware LP.
In computing, a process is the instance of a computer program that is being executed by one or many threads. There are many different process models, some of which are light weight, but almost all processes are rooted in an operating system (OS) process which comprises the program code, assigned system resources, physical and logical access permissions, and data structures to initiate, control and coordinate execution activity. Depending on the OS, a process may be made up of multiple threads of execution that execute instructions concurrently.
In computer science, a thread of execution is the smallest sequence of programmed instructions that can be managed independently by a scheduler, which is typically a part of the operating system. In many cases, a thread is a component of a process.
In computing, a system call is the programmatic way in which a computer program requests a service from the operating system on which it is executed. This may include hardware-related services, creation and execution of new processes, and communication with integral kernel services such as process scheduling. System calls provide an essential interface between a process and the operating system.
In computing, scheduling is the action of assigning resources to perform tasks. The resources may be processors, network links or expansion cards. The tasks may be threads, processes or data flows.
x86-64 is a 64-bit version of the x86 instruction set, first announced in 1999. It introduced two new modes of operation, 64-bit mode and compatibility mode, along with a new 4-level paging mode.
In software engineering, a spinlock is a lock that causes a thread trying to acquire it to simply wait in a loop ("spin") while repeatedly checking whether the lock is available. Since the thread remains active but is not performing a useful task, the use of such a lock is a kind of busy waiting. Once acquired, spinlocks will usually be held until they are explicitly released, although in some implementations they may be automatically released if the thread being waited on blocks or "goes to sleep".
In computer systems programming, an interrupt handler, also known as an interrupt service routine or ISR, is a special block of code associated with a specific interrupt condition. Interrupt handlers are initiated by hardware interrupts, software interrupt instructions, or software exceptions, and are used for implementing device drivers or transitions between protected modes of operation, such as system calls.
The architecture of Windows NT, a line of operating systems produced and sold by Microsoft, is a layered design that consists of two main components, user mode and kernel mode. It is a preemptive, reentrant multitasking operating system, which has been designed to work with uniprocessor and symmetrical multiprocessor (SMP)-based computers. To process input/output (I/O) requests, it uses packet-driven I/O, which utilizes I/O request packets (IRPs) and asynchronous I/O. Starting with Windows XP, Microsoft began making 64-bit versions of Windows available; before this, there were only 32-bit versions of these operating systems.
In computer science, hierarchical protection domains, often called protection rings, are mechanisms to protect data and functionality from faults and malicious behavior.
ntoskrnl.exe, also known as the kernel image, contains the kernel and executive layers of the Microsoft Windows NT kernel, and is responsible for hardware abstraction, process handling, and memory management. In addition to the kernel and executive layers, it contains the cache manager, security reference monitor, memory manager, scheduler (Dispatcher), and blue screen of death.
CPU time is the amount of time for which a central processing unit (CPU) was used for processing instructions of a computer program or operating system, as opposed to elapsed time, which includes for example, waiting for input/output (I/O) operations or entering low-power (idle) mode. The CPU time is measured in clock ticks or seconds. Often, it is useful to measure CPU time as a percentage of the CPU's capacity, which is called the CPU usage. CPU time and CPU usage have two main uses.
In the x86 computer architecture, HLT
(halt) is an assembly language instruction which halts the central processing unit (CPU) until the next external interrupt is fired. Interrupts are signals sent by hardware devices to the CPU alerting it that an event occurred to which it should react. For example, hardware timers send interrupts to the CPU at regular intervals.
Dynamic frequency scaling is a power management technique in computer architecture whereby the frequency of a microprocessor can be automatically adjusted "on the fly" depending on the actual needs, to conserve power and reduce the amount of heat generated by the chip. Dynamic frequency scaling helps preserve battery on mobile devices and decrease cooling cost and noise on quiet computing settings, or can be useful as a security measure for overheated systems.
A process is a program in execution, and an integral part of any modern-day operating system (OS). The OS must allocate resources to processes, enable processes to share and exchange information, protect the resources of each process from other processes and enable synchronization among processes. To meet these requirements, the OS must maintain a data structure for each process, which describes the state and resource ownership of that process, and which enables the OS to exert control over each process.
A computer processor is described as idle when it is not being used by any program.
An Interrupt Request Level (IRQL) is a hardware-independent means with which Windows prioritizes interrupts that come from the system's processors. On processor architectures on which Windows runs, hardware generates signals that are sent to an interrupt controller. The interrupt controller sends an interrupt request to the CPU with a certain priority level, and the CPU sets a mask that causes any other interrupts with a lower priority to be put into a pending state, until the CPU releases control back to the interrupt controller. If a signal comes in at a higher priority, then the current interrupt will be put into a pending state; the CPU sets the interrupt mask to the priority and places any interrupts with a lower priority into a pending state until the CPU finishes handling the new, higher priority interrupt.