Voodoo 5

Last updated
Voodoo 5
KL 3DFX Voodoo5 5500.jpg
3dfx Voodoo5 5500 AGP
Release dateJune 22, 2000;24 years ago (June 22, 2000)
CodenameVSA-100
Cards
Entry-levelVoodoo4 4500
Mid-rangeVoodoo5 5500
DirectX Direct3D 6.0
History
Predecessor Voodoo3
Support status
Unsupported
3dfx Voodoo5 5500 AGP KL 3DFX Voodoo5 5500.jpg
3dfx Voodoo5 5500 AGP

The Voodoo 5 was the last and most powerful graphics card line that was released by 3dfx Interactive. All members of the family were based upon the VSA-100 graphics processor. [1] Only the single-chip Voodoo 4 4500 and dual-chip Voodoo 5 5500 made it to market.

Contents

Architecture and performance

VSA-100 ICs, revision 220 and 320 shown VSA-100 GPUs.jpg
VSA-100 ICs, revision 220 and 320 shown

The VSA-100 graphics chip is a direct descendant of "Avenger", more commonly known as Voodoo3. It was built on a 250 nm semiconductor manufacturing process, as with Voodoo3. However, the process was tweaked with a sixth metal layer to allow for better density and speed, and the transistors have a slightly shorter gate length and thinner gate oxide. VSA-100 has a transistor count of roughly 14 million, compared to Voodoo3's ~8 million. The chip has a larger texture cache than its predecessors and the data paths are 32 bits wide rather than 16-bit. Rendering calculations are 40 bits wide in VSA-100 but the operands and results are stored as 32-bit. [2]

One of the design goals for the VSA-100 was scalability. The name of the chip is an abbreviation for "Voodoo Scalable Architecture." By using one or more VSA-100 chips on a board, the various market segments for graphics cards are satisfied with just a single graphics chip design. Theoretically, anywhere from 1 to 32 VSA-100 GPUs could be run in parallel on a single graphics card, and the fillrate of the card would increase proportionally. On cards with more than one VSA-100, the chips are linked using 3dfx's Scan-Line Interleave (SLI) technology. A major drawback to this method of performance scaling is that various parts of hardware are needlessly duplicated on the cards and board complexity increases with each additional processor.

3dfx changed the rendering pipeline from one pixel pipeline with twin texture mapping units (Voodoo2/3) to a dual pixel pipeline design with one texture mapping unit on each. [3] This design, commonly referred to as a 2×1 configuration, has an advantage over the prior 1×2 design with the ability to always output 2 pixels and 2 texels per clock instead of 1 pixel and 2 texels per clock.

This is the first 3dfx graphics chip to support full 32-bit color depth in 3D, compared to 16-bit color depth with all previous designs. The limitation of 256px × 256px maximum texture dimensions was also addressed and VSA-100 can use up to 2048px × 2048px textures. Additionally, 3dfx implemented the FXT1 and DXTC texture compression techniques. [3]

The VSA-100 supports a hardware accumulation buffer, known as the "T-buffer". When rendering to the T-buffer, VSA-100 can store the combined outputs of several frames. This mechanism allows for creation of effects such as motion blur (if used temporally) and anti-aliasing (if used spatially). [3] VSA-100 supports rotated-grid super-sampling anti-aliasing (RGSS AA) modes, with a maximum anti-aliasing level determined by the number of VSA-100 chips in the SLI configuration. One chip allows 2× AA, two chips allows 4× AA, four chips provides for 8× AA and so on. The RGSS method of anti-aliasing combines multiple samples of each frame, resulting in higher quality than the brute force ordered-grid over-sampling of ImgTech PowerVR, ATI Radeon DDR and Nvidia GeForce 2. [4]

The chip implements a 128-bit SDRAM interface, again similar to the Voodoo3. Memory capacity and bandwidth is separately dedicated to each VSA-100 processor. While capacity is not cumulative across the entire card, bandwidth is effectively cumulative and thus a card with 2× VSA-100 processors has similar bandwidth to a single-chip graphics card using 128-bit DDR memory. Memory is clocked synchronously with the VSA-100 chip. Later, unreleased boards were planned to offer a 64-bit DDR memory design instead, in order to reduce board costs through lower complexity, while offering similar RAM performance.

Voodoo 4 and Voodoo 5 support MPEG-2 video acceleration.

While VSA-100 is an AGP 4× capable graphics processor, 3dfx did not implement AGP texturing.

Models

Voodoo 4 4500

3dfx Voodoo4 4500 AGP 3dfx Voodoo4 4500.png
3dfx Voodoo4 4500 AGP

Released after the Voodoo 5 5500, the Voodoo4 4500 is the budget implementation of the VSA-100 product. It used only one VSA-100 chip and did not need an additional power connection. It was more expensive yet it was beaten in almost all areas by the GeForce2 MX and Radeon SDR. [5]

Voodoo 5 5000

The unreleased Voodoo 5 5000 was to be similar to the 5500 but with half of the RAM capacity (32 MB total). [6]

Voodoo 5 5500

The Voodoo 5 5500 comes in three flavors: a universal AGP version (AGP 1/2x, prototypes were made with AGP4x-interface) with full sideband support, PCI, and the Mac Edition, which is only available for PCI, though could run in 66 MHz PCI slots. The Mac Edition has dual link DVI-D and VGA-A outputs, the other versions just have one VGA-out.

In games, the Voodoo 5 5500 is able to outperform the Nvidia GeForce 256 and ATI Rage 128 MAXX, but unfortunately Voodoo5 5500 was late to market and was up against the new GeForce 2 GTS and Radeon DDR, both of which easily outperformed the Voodoo 5. [7]

Voodoo 5 6000

Voodoo 5 6000 Prototype How NVIDIA won the 3D race 20 years ago (Ji Ke Wan Geekerwan) 48.png
Voodoo 5 6000 Prototype

The Voodoo 5 6000 is the unreleased high-end product in the Voodoo5 line. It was to use four 166 MHz VSA-100 processors, each with its own 32 MB of 166 MHz SDRAM, resulting in the first 128 MB graphics card (consisting of sixteen 8 MB chips). Approximately 1000+ test cards were produced. Because the card used more power than the AGP specification allowed for, a special power supply called Voodoo Volts had to be included with it. This would have been an external device that would connect to an AC outlet. Most of the prototype cards utilized a standard internal power supply Molex power connector.

With regards to performance, little was known until enthusiasts were able to get pre-release hardware and run tests on it. The results showed that the Voodoo 5 6000 outperformed the GeForce 2 Ultra and Radeon 7500, which were the fastest iterations of the GeForce 2 and Radeon R100 lines, respectively. (It was rumored that GeForce 2 Ultra was intended to prevent 3dfx taking the lead with their Voodoo 5 6000.) In some cases, the 6000 was shown to compete well with the next-generation GeForce 3. [8]

Unfortunately, the production cost of the Voodoo5 6000 would have likely hampered its competitiveness from a profitability standpoint. Compared to the single-chip GeForce and Radeon cards, a Voodoo5 6000 is burdened with much redundancy and a complicated board. It was projected to have a US$600 price tag, considerably higher than competing parts. Despite its high price point, the Voodoo5 6000 would not have offered next-generation DirectX 8.0 vertex and pixel shaders that would be found in the GeForce 3 (which was intended by Nvidia to replace the short-lived GeForce 2 Ultra as its flagship product) and Radeon 8500, nor even DirectX 7 features such as hardware transform and lighting acceleration for vertices. The precarious financial situation of 3dfx was another factor contributing to the 6000's demise.

There were five revisions of the Voodoo 5 6000: (the numbers after the model state the build week: 10 for week 10, 00 for year 2000).

Intel Revision 1 (model 1000–1900)

This was an early alpha of the card primarily used for photos and testing purposes. These cards generally had a short life expectancy, and were largely incompatible with various motherboards at the time. They also typically could not achieve speeds above 143 MHz without suffering from VSA-100 "death". This revision used an Intel PCI bridge chip, was equipped with 128 MB of 5.4ns SDRAM and used a proprietary external 3dfx power supply. Initial models had the chips mounted in the arrangement seen in the photograph, but this required a PCB with eight circuitry layers (most GeForce 2 cards were four-layer, while the Voodoo 5 5500 was six-layer) and would have been unreasonably expensive. All of the later revisions had the four chips mounted in a row.

HiNT Revision 2 (model 2000–2900)

This version dropped the Intel PCI bridge chip in favor of a HiNT bridge chip. These cards were able to be powered by either the internal system PSU or by a proprietary 3dfx external power supply, a feature seen in all subsequent prototype revisions. The clock speed varied from card to card, generally either 166 or 183 MHz. The VSA-100 chips used still did not have a long life expectancy, and may have had problems running anti-aliasing. This revision had 128 MB of 5.0ns SDRAM.

HiNT Revision 3 (model 3000–3500)

Cards from this revision varied in stability from dead to fully functional. A lot of problems had been fixed in this revision, but it still had VSA-100 thermal death problems above 183 MHz. These cards either had 166 or 183 MHz VSA-100 GPUs.

HiNT Revision 4 (3600–3700)

3dfx decided on 166 MHz due to issues with the 6000 running properly at 183 MHz due to a design flaw with the PCB. Most of the problems seen in earlier revisions were fixed, although there may have been glitches while in anti-aliasing mode on some cards. Most of the known cards are revision A from week 37, 2000.

HiNT Revision 5 (model 3900)

Little is known about this series except that this is the final revision. It was meant to be the retail unit, but shortly after the run of 10 were produced, the 6000 series was cancelled.

List

ModelLaunch Code
name
Fab Bus
interface
Clock (MHz)Core
config1
Fillrate Memory
Direct3D
support
MOps/s
MPixels/s
MTexels/s
MVertices/s
Size (MiB)
Bandwidth
(GB/s)
Bus type
Bus width
(bit)
PCI
AGP
Memory
Core
Voodoo4 4000Never releasedVSA-100250 nmGreen check.svg1661662:23333333330162.66SDR1286.0
Voodoo4-2 4000Never releasedVSA-101180 nmGreen check.svg??2:2???016?SDR128
Voodoo4-2 4200Never releasedVSA-101180 nmGreen check.svgGreen check.svg1431432:2143143?016/32?DDR64
Voodoo4-2 4200Never releasedVSA-101180 nmGreen check.svg1661662:2166166?032?DDR64
Voodoo4 4500Oct. 13, 2000VSA-100250 nmGreen check.svg2/4× [9] 1661662:23333333330322.66SDR128
Voodoo4 4800Never releasedVSA-100250 nmGreen check.svg1661662:23333333330642.66SDR128
Voodoo5 5000Never releasedVSA-100 ×2250 nmGreen check.svg1661662:2 ×26676676670322.66SDR128
Voodoo5 5500June 22, 2000VSA-100 ×2250 nmGreen check.svg [9] 1661662:2 ×26676676670645.33SDR128
Voodoo5 6000Never releasedVSA-100 ×4250 nmGreen check.svg1661662:2 ×4133313331333012810.66SDR256

Successor

The successor to the Voodoo 5 series, codenamed "Rampage", was already planned and had been in development for years. It was supposed to have a smaller semiconductor device fabrication process, support for DDR SDRAM, 200+ MHz core, and a T&L unit. However, it was early in its development and only approximately twenty working cards were produced before 3dfx went bankrupt, and most assets were purchased by Nvidia in late 2000. [10] [11]

Competing chipsets

Related Research Articles

<span class="mw-page-title-main">GeForce 256</span> GPU by Nvidia

The GeForce 256 is the original release in Nvidia's "GeForce" product line. Announced on August 31, 1999 and released on October 11, 1999, the GeForce 256 improves on its predecessor by increasing the number of fixed pixel pipelines, offloading host geometry calculations to a hardware transform and lighting (T&L) engine, and adding hardware motion compensation for MPEG-2 video. It offered a notable leap in 3D PC gaming performance and was the first fully Direct3D 7-compliant 3D accelerator.

<span class="mw-page-title-main">GeForce FX series</span> Series of GPUs by Nvidia

The GeForce FX or "GeForce 5" series is a line of graphics processing units from the manufacturer Nvidia.

<span class="mw-page-title-main">GeForce 2 series</span> Series of GPUs by Nvidia

The GeForce 2 series (NV15) is the second generation of Nvidia's GeForce line of graphics processing units (GPUs). Introduced in 2000, it is the successor to the GeForce 256.

<span class="mw-page-title-main">3dfx</span> American computer hardware company

3dfx Interactive, Inc. was an American computer hardware company headquartered in San Jose, California, founded in 1994, that specialized in the manufacturing of 3D graphics processing units, and later, video cards. It was a pioneer in the field from the late 1990s to 2000.

<span class="mw-page-title-main">RIVA 128</span> Graphics processing unit developed by Nvidia

The RIVA 128, or "NV3", was a consumer graphics processing unit created in 1997 by Nvidia. It was the first to integrate 3D acceleration in addition to traditional 2D and video acceleration. Its name is an acronym for Real-time Interactive Video and Animation accelerator.

<span class="mw-page-title-main">RIVA TNT2</span> Graphics Chip by Nvidia

The RIVA TNT2 is a graphics processing unit manufactured by Nvidia starting in early 1999. The chip is codenamed "NV5" because it is the 5th graphics chip design by Nvidia, succeeding the RIVA TNT (NV4). RIVA is an acronym for Real-time Interactive Video and Animation accelerator. The "TNT" suffix refers to the chip's ability to work on two texels at once. Nvidia removed RIVA from the name later in the chip's lifetime.

<span class="mw-page-title-main">GeForce 6 series</span> Series of GPUs by Nvidia

The GeForce 6 series is the sixth generation of Nvidia's GeForce line of graphics processing units. Launched on April 14, 2004, the GeForce 6 family introduced PureVideo post-processing for video, SLI technology, and Shader Model 3.0 support.

<span class="mw-page-title-main">S3 Savage</span> Line of PC graphics chipsets by S3

Savage was a product-line of PC graphics chipsets designed by S3.

<span class="mw-page-title-main">Radeon R200 series</span> Series of video cards

The R200 is the second generation of GPUs used in Radeon graphics cards and developed by ATI Technologies. This GPU features 3D acceleration based upon Microsoft Direct3D 8.1 and OpenGL 1.3, a major improvement in features and performance compared to the preceding Radeon R100 design. The GPU also includes 2D GUI acceleration, video acceleration, and multiple display outputs. "R200" refers to the development codename of the initially released GPU of the generation. It is the basis for a variety of other succeeding products.

<span class="mw-page-title-main">Diamond Multimedia</span> American company

Diamond Multimedia is an American company that specializes in many forms of multimedia technology. They have produced graphics cards, motherboards, modems, sound cards and MP3 players; however, the company began with the production of the TrackStar, a PC add-on card which emulated Apple II computers. They were one of the major players in the 2D and early 3D graphics card competition throughout the 1990s and early 2000s.

<span class="mw-page-title-main">Rendition, Inc.</span>

Rendition, Inc., was a maker of 3D computer graphics chipsets in the mid to late 1990s. They were known for products such as the Vérité 1000 and Vérité 2x00 and for being one of the first 3D chipset makers to directly work with Quake developer John Carmack to make a hardware-accelerated version of the game (vQuake). Rendition's major competitor at the time was 3Dfx. Their proprietary rendering APIs were Speedy3D and RRedline.

<span class="mw-page-title-main">Radeon R300 series</span> Series of video cards

The R300 GPU, introduced in August 2002 and developed by ATI Technologies, is its third generation of GPU used in Radeon graphics cards. This GPU features 3D acceleration based upon Direct3D 9.0 and OpenGL 2.0, a major improvement in features and performance compared to the preceding R200 design. R300 was the first fully Direct3D 9-capable consumer graphics chip. The processors also include 2D GUI acceleration, video acceleration, and multiple display outputs.

<span class="mw-page-title-main">Radeon R100 series</span> Series of video cards

The Radeon R100 is the first generation of Radeon graphics chips from ATI Technologies. The line features 3D acceleration based upon Direct3D 7.0 and OpenGL 1.3, and all but the entry-level versions offloading host geometry calculations to a hardware transform and lighting (T&L) engine, a major improvement in features and performance compared to the preceding Rage design. The processors also include 2D GUI acceleration, video acceleration, and multiple display outputs. "R100" refers to the development codename of the initially released GPU of the generation. It is the basis for a variety of other succeeding products.

<span class="mw-page-title-main">ATI Rage</span> Series of video cards

The ATI Rage is a series of graphics chipsets developed by ATI Technologies offering graphical user interface (GUI) 2D acceleration, video acceleration, and 3D acceleration developed by ATI Technologies. It is the successor to the ATI Mach series of 2D accelerators.

<span class="mw-page-title-main">Matrox Parhelia</span> GPU by Matrox

The Matrox Parhelia-512 is a graphics processing unit (GPU) released by Matrox in 2002. It has full support for DirectX 8.1 and incorporates several DirectX 9.0 features. At the time of its release, it was best known for its ability to drive three monitors and its Coral Reef tech demo.

The G400 is a video card made by Matrox, released in September 1999. The graphics processor contains a 2D GUI, video, and Direct3D 6.0 3D accelerator. Codenamed "Toucan", it was a more powerful and refined version of its predecessor, the G200.

Transform, clipping, and lighting is a term used in computer graphics.

<span class="mw-page-title-main">Voodoo2</span> Series of Graphics Cards

The Voodoo2 is a set of three specialized 3D graphics chips on a single chipset setup, made by 3dfx. It was released in February 1998 as a replacement for the original Voodoo Graphics chipset. The card runs at a chipset clock rate of 90 MHz and uses 100 MHz EDO DRAM, and is available for the PCI interface. The Voodoo2 comes in two models, one with 8 MB RAM and one with 12 MB RAM. The 8 MB card has 2 MB of memory per texture mapping unit (TMU) vs. 4 MB on the 12 MB model. The 4 MB framebuffer on both cards support a maximum screen resolution of 800 × 600, while the increased texture memory on the 12 MB card allows more detailed textures. Some boards with 8 MB can be upgraded to 12 MB with an additional daughter board.

<span class="mw-page-title-main">Radeon 9000 series</span> Series of video cards

The R300 GPU, introduced in August 2002 and developed by ATI Technologies, is its third generation of GPU used in Radeon graphics cards. This GPU features 3D acceleration based upon Direct3D 9.0 and OpenGL 2.0, a major improvement in features and performance compared to the preceding R200 design. R300 was the first fully Direct3D 9-capable consumer graphics chip. The processors also include 2D GUI acceleration, video acceleration, and multiple display outputs.

The R200 is the second generation of GPUs used in Radeon graphics cards and developed by ATI Technologies. This GPU features 3D acceleration based upon Microsoft Direct3D 8.1 and OpenGL 1.3, a major improvement in features and performance compared to the preceding Radeon R100 design. The GPU also includes 2D GUI acceleration, video acceleration, and multiple display outputs. "R200" refers to the development codename of the initially released GPU of the generation. It is the basis for a variety of other succeeding products.

References

  1. Lal Shimpi, Anand. 3dfx Voodoo5 5500, Anandtech, July 11, 2000.
  2. 3dfx Interview with Peter Wicher, Hot Hardware, December 15, 2001.
  3. 1 2 3 3dfx Voodoo 5 5500 Preview Archived 2009-06-17 at the Wayback Machine , Firing Squad, April 24, 2000.
  4. Multi-Sampling Anti-Aliasing Explained, Firing Squad, February 13, 2001.
  5. AnandTech – 3dfx Voodoo4 4500AGP
  6. "3dfx Voodoo5 5000 PCI". TechPowerUp. Retrieved 1 January 2024.
  7. Guido Shah, Sarju. Voodoo5 5500 Review, Firingsquad, 2000-07-14.
  8. Jasper. 3dfx Voodoo 5 6000 Review Archived 2006-08-22 at the Wayback Machine , Sudhian, July 26, 2006.
  9. 1 2 "Identify your 3dfx Hardware with Part No. and/or special Markings". FalconFly Central. Archived from the original on June 7, 2004.
  10. TDG-3dfx-Rampage
  11. Support for 3dfx Voodoo cards | Nvidia