Farnesoid X receptor

Last updated
NR1H4
Protein NR1H4 PDB 1osh.png
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases NR1H4 , BAR, FXR, HRR-1, HRR1, RIP14, nuclear receptor subfamily 1 group H member 4, PFIC5
External IDs OMIM: 603826 MGI: 1352464 HomoloGene: 3760 GeneCards: NR1H4
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001163504
NM_001163700
NM_009108
NM_001385711

RefSeq (protein)

NP_001156976
NP_001157172
NP_033134
NP_001372640

Location (UCSC) Chr 12: 100.47 – 100.56 Mb Chr 10: 89.29 – 89.37 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

The bile acid receptor (BAR), also known as farnesoid X receptor (FXR) or NR1H4 (nuclear receptor subfamily 1, group H, member 4), is a nuclear receptor that is encoded by the NR1H4 gene in humans. [5] [6]

Function

FXR is expressed at high levels in the liver and intestine. Chenodeoxycholic acid and other bile acids are natural ligands for FXR. Similar to other nuclear receptors, when activated, FXR translocates to the cell nucleus, forms a dimer (in this case a heterodimer with RXR) and binds to hormone response elements on DNA, which up- or down-regulates the expression of certain genes. [6]

One of the primary functions of FXR activation is the suppression of cholesterol 7 alpha-hydroxylase (CYP7A1), the rate-limiting enzyme in bile acid synthesis from cholesterol. FXR does not directly bind to the CYP7A1 promoter. Rather, FXR induces expression of small heterodimer partner (SHP), which then functions to inhibit transcription of the CYP7A1 gene. In this way, a negative feedback pathway is established in which synthesis of bile acids is inhibited when cellular levels are already high.

The absence of FXR in an FXR-/- mouse model led to increased bile acids in the liver, and the spontaneous development of liver tumors. [7] Reducing the pool of bile acids in the FXR-/- mice by feeding the bile acid sequestering resin cholestyramine reduced the number and size of the malignant lesions.

FXR has also been found to be important in regulation of hepatic triglyceride levels. [8] Specifically, FXR activation suppresses lipogenesis and promotes free fatty acid oxidation by PPARα activation. [8] Studies have also shown the FXR to regulate the expression and activity of epithelial transport proteins involved in fluid homeostasis in the intestine, such as the cystic fibrosis transmembrane conductance regulator (CFTR). [9]

Activation of FXR in diabetic mice reduces plasma glucose and improves insulin sensitivity, whereas inactivation of FXR has the opposite effect. [8]

Interactions

Farnesoid X receptor has been shown to interact with:

Ligands

A number of ligands for FXR are known, of both natural and synthetic origin. [12] [13] [14]

Agonists
Antagonists

Related Research Articles

<span class="mw-page-title-main">Chenodeoxycholic acid</span> Chemical compound

Chenodeoxycholic acid is a bile acid. Salts of this carboxylic acid are called chenodeoxycholates. Chenodeoxycholic acid is one of the main bile acids. It was first isolated from the bile of the domestic goose, which gives it the "cheno" portion of its name.

<span class="mw-page-title-main">Bile acid</span> Steroid acid found predominantly in the bile of mammals and other vertebrates

Bile acids are steroid acids found predominantly in the bile of mammals and other vertebrates. Diverse bile acids are synthesized in the liver. Bile acids are conjugated with taurine or glycine residues to give anions called bile salts.

<span class="mw-page-title-main">Liver X receptor</span> Nuclear receptor

The liver X receptor (LXR) is a member of the nuclear receptor family of transcription factors and is closely related to nuclear receptors such as the PPARs, FXR and RXR. Liver X receptors (LXRs) are important regulators of cholesterol, fatty acid, and glucose homeostasis. LXRs were earlier classified as orphan nuclear receptors, however, upon discovery of endogenous oxysterols as ligands they were subsequently deorphanized.

<span class="mw-page-title-main">Pregnane X receptor</span> Mammalian protein found in Homo sapiens

In the field of molecular biology, the pregnane X receptor (PXR), also known as the steroid and xenobiotic sensing nuclear receptor (SXR) or nuclear receptor subfamily 1, group I, member 2 (NR1I2) is a protein that in humans is encoded by the NR1I2 gene.

<span class="mw-page-title-main">Constitutive androstane receptor</span> Protein-coding gene in humans

The constitutive androstane receptor (CAR) also known as nuclear receptor subfamily 1, group I, member 3 is a protein that in humans is encoded by the NR1I3 gene. CAR is a member of the nuclear receptor superfamily and along with pregnane X receptor (PXR) functions as a sensor of endobiotic and xenobiotic substances. In response, expression of proteins responsible for the metabolism and excretion of these substances is upregulated. Hence, CAR and PXR play a major role in the detoxification of foreign substances such as drugs.

<span class="mw-page-title-main">Nuclear receptor</span> Protein

In the field of molecular biology, nuclear receptors are a class of proteins responsible for sensing steroids, thyroid hormones, vitamins, and certain other molecules. These intracellular receptors work with other proteins to regulate the expression of specific genes thereby controlling the development, homeostasis, and metabolism of the organism.

<span class="mw-page-title-main">Cholesterol 7 alpha-hydroxylase</span> Protein-coding gene in the species Homo sapiens

Cholesterol 7 alpha-hydroxylase also known as cholesterol 7-alpha-monooxygenase or cytochrome P450 7A1 (CYP7A1) is an enzyme that in humans is encoded by the CYP7A1 gene which has an important role in cholesterol metabolism. It is a cytochrome P450 enzyme, which belongs to the oxidoreductase class, and converts cholesterol to 7-alpha-hydroxycholesterol, the first and rate limiting step in bile acid synthesis.

<span class="mw-page-title-main">Liver receptor homolog-1</span> Protein-coding gene in the species Homo sapiens

The liver receptor homolog-1 (LRH-1) also known as totipotency pioneer factor NR5A2 is a protein that in humans is encoded by the NR5A2 gene. LRH-1 is a member of the nuclear receptor family of intracellular transcription factors.

<span class="mw-page-title-main">Small heterodimer partner</span> Protein-coding gene in the species Homo sapiens

The small heterodimer partner (SHP) also known as NR0B2 is a protein that in humans is encoded by the NR0B2 gene. SHP is a member of the nuclear receptor family of intracellular transcription factors. SHP is unusual for a nuclear receptor in that it lacks a DNA binding domain. Therefore, it is technically neither a transcription factor nor nuclear receptor but nevertheless it is still classified as such due to relatively high sequence homology with other nuclear receptor family members.

<span class="mw-page-title-main">Rev-ErbA alpha</span> Protein-coding gene in the species Homo sapiens

Rev-Erb alpha (Rev-Erbɑ), also known as nuclear receptor subfamily 1 group D member 1 (NR1D1), is one of two Rev-Erb proteins in the nuclear receptor (NR) family of intracellular transcription factors. In humans, REV-ERBɑ is encoded by the NR1D1 gene, which is highly conserved across animal species.

<span class="mw-page-title-main">RAR-related orphan receptor alpha</span> Protein-coding gene in the species Homo sapiens

RAR-related orphan receptor alpha (RORα), also known as NR1F1 is a nuclear receptor that in humans is encoded by the RORA gene. RORα participates in the transcriptional regulation of some genes involved in circadian rhythm. In mice, RORα is essential for development of cerebellum through direct regulation of genes expressed in Purkinje cells. It also plays an essential role in the development of type 2 innate lymphoid cells (ILC2) and mutant animals are ILC2 deficient. In addition, although present in normal numbers, the ILC3 and Th17 cells from RORα deficient mice are defective for cytokine production.

<span class="mw-page-title-main">Retinoid X receptor alpha</span> Protein-coding gene in the species Homo sapiens

Retinoid X receptor alpha (RXR-alpha), also known as NR2B1 is a nuclear receptor that in humans is encoded by the RXRA gene.

<span class="mw-page-title-main">Peroxisome proliferator-activated receptor alpha</span> Nuclear receptor protein found in humans

Peroxisome proliferator-activated receptor alpha (PPAR-α), also known as NR1C1, is a nuclear receptor protein functioning as a transcription factor that in humans is encoded by the PPARA gene. Together with peroxisome proliferator-activated receptor delta and peroxisome proliferator-activated receptor gamma, PPAR-alpha is part of the subfamily of peroxisome proliferator-activated receptors. It was the first member of the PPAR family to be cloned in 1990 by Stephen Green and has been identified as the nuclear receptor for a diverse class of rodent hepatocarcinogens that causes proliferation of peroxisomes.

<span class="mw-page-title-main">Liver X receptor alpha</span> Protein-coding gene in the species Homo sapiens

Liver X receptor alpha (LXR-alpha) is a nuclear receptor protein that in humans is encoded by the NR1H3 gene.

<span class="mw-page-title-main">Estrogen-related receptor alpha</span> Protein-coding gene in the species Homo sapiens

Estrogen-related receptor alpha (ERRα), also known as NR3B1, is a nuclear receptor that in humans is encoded by the ESRRA gene. ERRα was originally cloned by DNA sequence homology to the estrogen receptor alpha, but subsequent ligand binding and reporter-gene transfection experiments demonstrated that estrogens did not regulate ERRα. Currently, ERRα is considered an orphan nuclear receptor.

<span class="mw-page-title-main">Liver X receptor beta</span> Protein-coding gene in the species Homo sapiens

Liver X receptor beta (LXR-β) is a member of the nuclear receptor family of transcription factors. LXR-β is encoded by the NR1H2 gene.

<span class="mw-page-title-main">PPAR agonist</span> Drug

PPAR agonists are drugs which act upon the peroxisome proliferator-activated receptor. They are used for the treatment of symptoms of the metabolic syndrome, mainly for lowering triglycerides and blood sugar.

<span class="mw-page-title-main">Obeticholic acid</span> Chemical compound

Obeticholic acid (OCA), sold under the brand name Ocaliva, is a semi-synthetic bile acid analogue which has the chemical structure 6α-ethyl-chenodeoxycholic acid. It is used as a medication used to treat primary biliary cholangitis. Intercept Pharmaceuticals Inc. hold the worldwide rights to develop OCA outside Japan and China, where it is licensed to Dainippon Sumitomo Pharma.

<span class="mw-page-title-main">Fexaramine</span> Chemical compound

Fexaramine is an investigational compound which acts as an agonist of the farnesoid X receptor (FXR), which is a bile acid-activated nuclear receptor that controls bile-acid synthesis, conjugation and transport, as well as lipid metabolism through actions in the liver and intestine.

<span class="mw-page-title-main">David D. Moore</span> American molecular biologist

David Dudley Moore is an American molecular biologist known for his work investigating nuclear hormone receptors. He is a Professor and Chair of the Department of Nutritional Sciences & Toxicology at the University of California, Berkeley. He was a founding editor for the Current Protocols series of laboratory manuals in 1987.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000012504 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000047638 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. "Entrez Gene: NR1H4 nuclear receptor subfamily 1, group H, member 4".
  6. 1 2 Forman BM, Goode E, Chen J, Oro AE, Bradley DJ, Perlmann T, Noonan DJ, Burka LT, McMorris T, Lamph WW, Evans RM, Weinberger C (Jun 1995). "Identification of a nuclear receptor that is activated by farnesol metabolites". Cell. 81 (5): 687–93. doi: 10.1016/0092-8674(95)90530-8 . PMID   7774010.
  7. Yang F, Huang X, Yi T, Yen Y, Moore DD, Huang W. Spontaneous development of liver tumors in the absence of the bile acid receptor farnesoid X receptor. Cancer Res. 2007 Feb 1;67(3):863-7. doi: 10.1158/0008-5472.CAN-06-1078. PMID: 17283114
  8. 1 2 3 Jiao Y, Lu Y, Li XY (Jan 2015). "Farnesoid X receptor: a master regulator of hepatic triglyceride and glucose homeostasis". Acta Pharmacologica Sinica. 36 (1): 44–50. doi:10.1038/aps.2014.116. PMC   4571315 . PMID   25500875.
  9. Mroz MS, Keating N, Ward JB, Sarker R, Amu S, Aviello G, Donowitz M, Fallon PG, Keely SJ (May 2014). "Farnesoid X receptor agonists attenuate colonic epithelial secretory function and prevent experimental diarrhoea in vivo" (PDF). Gut. 63 (5): 808–17. doi:10.1136/gutjnl-2013-305088. PMID   23916961. S2CID   15778582.
  10. Zhang Y, Castellani LW, Sinal CJ, Gonzalez FJ, Edwards PA (Jan 2004). "Peroxisome proliferator-activated receptor-gamma coactivator 1alpha (PGC-1alpha) regulates triglyceride metabolism by activation of the nuclear receptor FXR". Genes & Development. 18 (2): 157–69. doi:10.1101/gad.1138104. PMC   324422 . PMID   14729567.
  11. Seol W, Choi HS, Moore DD (Jan 1995). "Isolation of proteins that interact specifically with the retinoid X receptor: two novel orphan receptors". Molecular Endocrinology. 9 (1): 72–85. doi: 10.1210/mend.9.1.7760852 . PMID   7760852.
  12. Fiorucci S, Zampella A, Distrutti E (2012). "Development of FXR, PXR and CAR agonists and antagonists for treatment of liver disorders". Current Topics in Medicinal Chemistry. 12 (6): 605–24. doi:10.2174/156802612799436678. PMID   22242859.
  13. Fiorucci S, Mencarelli A, Distrutti E, Zampella A (May 2012). "Farnesoid X receptor: from medicinal chemistry to clinical applications". Future Medicinal Chemistry . 4 (7): 877–91. doi:10.4155/fmc.12.41. PMID   22571613.
  14. Vaz B, de Lera ÁR (Nov 2012). "Advances in drug design with RXR modulators". Expert Opinion on Drug Discovery. 7 (11): 1003–16. doi:10.1517/17460441.2012.722992. PMID   22954251. S2CID   36317393.
  15. Ricketts ML, Boekschoten MV, Kreeft AJ, Hooiveld GJ, Moen CJ, Müller M, Frants RR, Kasanmoentalib S, Post SM, Princen HM, Porter JG, Katan MB, Hofker MH, Moore DD (Jul 2007). "The cholesterol-raising factor from coffee beans, cafestol, as an agonist ligand for the farnesoid and pregnane X receptors". Molecular Endocrinology. 21 (7): 1603–16. doi: 10.1210/me.2007-0133 . PMID   17456796.
  16. Zhang, S.; Pan, X.; Jeong, H. (2015). "GW4064, an Agonist of Farnesoid X Receptor, Represses CYP3A4 Expression in Human Hepatocytes by Inducing Small Heterodimer Partner Expression". Drug Metabolism and Disposition. 43 (5): 743–748. doi:10.1124/dmd.114.062836. PMC   4407707 . PMID   25725071.
  17. Carotti A, Marinozzi M, Custodi C, Cerra B, Pellicciari R, Gioiello A, Macchiarulo A (2014). "Beyond bile acids: targeting Farnesoid X Receptor (FXR) with natural and synthetic ligands". Current Topics in Medicinal Chemistry. 14 (19): 2129–42. doi:10.2174/1568026614666141112094058. PMID   25388537. Archived from the original on 2021-10-19.
  18. Jin L, Feng X, Rong H, Pan Z, Inaba Y, Qiu L, et al. (2013). "The antiparasitic drug ivermectin is a novel FXR ligand that regulates metabolism". Nature Communications. 4: 1937. Bibcode:2013NatCo...4.1937J. doi: 10.1038/ncomms2924 . PMID   23728580.

Further reading