Nuclear receptor 4A2

Last updated
NR4A2
Protein NR4A2 PDB 1cit.png
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases NR4A2 , HZF-3, NOT, NURR1, RNR1, TINUR, nuclear receptor subfamily 4 group A member 2
External IDs OMIM: 601828 MGI: 1352456 HomoloGene: 4509 GeneCards: NR4A2
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_006186
NM_173171
NM_173172
NM_173173

NM_001139509
NM_013613

RefSeq (protein)

NP_006177
NP_775265
NP_006177.1

NP_001132981
NP_038641

Location (UCSC) Chr 2: 156.32 – 156.34 Mb Chr 2: 57 – 57.01 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

The nuclear receptor 4A2 (NR4A2) (nuclear receptor subfamily 4 group A member 2) also known as nuclear receptor related 1 protein (NURR1) is a protein that in humans is encoded by the NR4A2 gene. [5] NR4A2 is a member of the nuclear receptor family of intracellular transcription factors.

Contents

NR4A2 plays a key role in the maintenance of the dopaminergic system of the brain. [6] Mutations in this gene have been associated with disorders related to dopaminergic dysfunction, including Parkinson's disease and schizophrenia. Misregulation of this gene may be associated with rheumatoid arthritis. Four transcript variants encoding four distinct isoforms have been identified for this gene. Additional alternate splice variants may exist, but their full-length nature has not been determined. [7]

This protein is thought to be critical to development of the dopamine phenotype in the midbrain, as mice without NR4A2 are lacking expression of this phenotype. This is further confirmed by studies showing that when forcing NR4A2 expression in naïve precursor cells, there is complete dopamine phenotype gene expression. [8]

While NR4A2 is a key protein, there are other factors required as research shows that solely expressing NR4A2 fails to stimulate this phenotypic gene expression. One of these suggested factors is winged-helix transcription factor 2 (Foxa2). Studies have found these two factors to be within the same region of developing dopaminergic neurons, both of these factors were present in order to have expression for the dopamine phenotype. [8]

NR4A2 and Developmental Disorders

Mutations in NR4A2 have been associated with various developmental disorders, including Parkinson disease, schizophrenia, manic depression, and autism. De novo deletions that affect NR4A2 have been identified in some individuals with intellectual disability and language impairment, some of whom meet DSM-5 criteria for an autism diagnosis. [9]

NR4A2 and Inflammation

Research has been conducted on NR4A2’s role in inflammation, and may provide important information in treating disorders caused by dopaminergic neuron disease. Inflammation in the CNS can result from activated microglia (macrophage analogs for the central nervous system) and other pro-inflammatory factors, such as bacterial lipopolysaccharide (LPS). LPS binds to toll-like receptors (TLR), which induces inflammatory gene expression by promoting signal-dependent transcription factors. To determine which cells are dopaminergic, experiments measured the enzyme tyrosine hydroxylase (TH), which is needed for dopamine synthesis. It has been shown that NR4A2 protects dopaminergic neurons from LPS-induced inflammation, by reducing inflammatory gene expression in microglia and astrocytes. When a short hairpin for NR4A2 was expressed in microglia and astrocytes, these cells produced inflammatory mediators, such as TNFa, NO synthase and IL-1β, supporting the conclusion that reduced NR4A2 promotes inflammation and leads to cell death of dopaminergic neurons. NR4A2 interacts with the transcription factor complex NF-κB-p65 on the inflammatory gene promoters. However, NR4A2 is dependent on other factors to be able to participate in these interactions. NR4A2 needs to be sumoylated and its co-regulating factor, glycogen synthase kinase 3, needs to be phosphorylated for these interactions to occur. Sumolyated NR4A2 recruits CoREST, a complex made of several proteins that assembles chromatin-modifying enzymes. The NR4A2/CoREST complex inhibits transcription of inflammatory genes. [10]

Structure

One investigation conducted research on the structure and found that NR4A2 does not contain a ligand-binding cavity but a patch filled with hydrophobic side chains. Non-polar amino acid residues of NR4A2’s co-regulators, SMRT and NCoR, bind to this hydrophobic patch. Analysis of tertiary structure has shown that the binding surface of the ligand-binding domain is located on the grooves of the 11th and 12th alpha helices. This study also found essential structural components of this hydrophobic patch, to be the three amino acids residues, F574, F592, L593; mutation of any these three inhibits LBD activity. [11]

Applications

NR4A2 induces tyrosine hydroxylase (TH) expression, which eventually leads to differentiation into dopaminergic neurons. NR4A2 has been demonstrated to induce differentiation in CNS precursor cells in vitro but they require additional factors to reach full maturity and dopaminergic differentiation. [12] Therefore, NR4A2 modulation may be promising for generation of dopaminergic neurons for Parkinson’s disease research, yet implantation of these induced cells as therapy treatments, has had limited results.

Knockout Studies

Studies have shown that heterozygous knockout mice for the NR4A2 gene demonstrate reduced dopamine release. Initially this was compensated for by a decrease in the rate of dopamine reuptake; however, over time this reuptake could not make up for the reduced amount of dopamine being released. Coupled with the loss of dopamine receptor neurons, this can result in the onset of symptoms for Parkinson’s Disease. [13]

Interactions

NR4A2 has been shown to interact with:

Related Research Articles

<span class="mw-page-title-main">Microglia</span> Glial cell located throughout the brain and spinal cord

Microglia are a type of neuroglia located throughout the brain and spinal cord. Microglia account for about 10-15% of cells found within the brain. As the resident macrophage cells, they act as the first and main form of active immune defense in the central nervous system (CNS). Microglia originate in the yolk sac under a tightly regulated molecular process. These cells are distributed in large non-overlapping regions throughout the CNS. Microglia are key cells in overall brain maintenance—they are constantly scavenging the CNS for plaques, damaged or unnecessary neurons and synapses, and infectious agents. Since these processes must be efficient to prevent potentially fatal damage, microglia are extremely sensitive to even small pathological changes in the CNS. This sensitivity is achieved in part by the presence of unique potassium channels that respond to even small changes in extracellular potassium. Recent evidence shows that microglia are also key players in the sustainment of normal brain functions under healthy conditions. Microglia also constantly monitor neuronal functions through direct somatic contacts and exert neuroprotective effects when needed.

<span class="mw-page-title-main">NF-κB</span> Nuclear transcriptional activator that binds to enhancer elements in many different cell types

Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) is a protein complex that controls transcription of DNA, cytokine production and cell survival. NF-κB is found in almost all animal cell types and is involved in cellular responses to stimuli such as stress, cytokines, free radicals, heavy metals, ultraviolet irradiation, oxidized LDL, and bacterial or viral antigens. NF-κB plays a key role in regulating the immune response to infection. Incorrect regulation of NF-κB has been linked to cancer, inflammatory and autoimmune diseases, septic shock, viral infection, and improper immune development. NF-κB has also been implicated in processes of synaptic plasticity and memory.

<span class="mw-page-title-main">Glial cell line-derived neurotrophic factor</span> Protein-coding gene in the species Homo sapiens

Glial cell line-derived neurotrophic factor (GDNF) is a protein that, in humans, is encoded by the GDNF gene. GDNF is a small protein that potently promotes the survival of many types of neurons. It signals through GFRα receptors, particularly GFRα1. It is also responsible for the determination of spermatogonia into primary spermatocytes, i.e. it is received by RET proto-oncogene (RET) and by forming gradient with SCF it divides the spermatogonia into two cells. As the result there is retention of spermatogonia and formation of spermatocyte.

Neurturin (NRTN) is a protein that is encoded in humans by the NRTN gene. Neurturin belongs to the glial cell line-derived neurotrophic factor (GDNF) family of neurotrophic factors, which regulate the survival and function of neurons. Neurturin’s role as a growth factor places it in the transforming growth factor beta (TGF-beta) subfamily along with its homologs persephin, artemin, and GDNF. It shares a 42% similarity in amino acid sequence with mature GDNF. It is also considered a trophic factor and critical in the development and growth of neurons in the brain. Neurotrophic factors like neurturin have been tested in several clinical trial settings for the potential treatment of neurodegenerative diseases, specifically Parkinson's disease.

<span class="mw-page-title-main">Nuclear receptor 4A1</span> Mammalian protein found in Homo sapiens

The nuclear receptor 4A1 also known as Nur77, TR3, and NGFI-B is a protein that in humans is encoded by the NR4A1 gene.

<span class="mw-page-title-main">Nuclear receptor 4A3</span> Protein-coding gene in the species Homo sapiens

The nuclear receptor 4A3 (NR4A3) also known as neuron-derived orphan receptor 1 (NOR1) is a protein that in humans is encoded by the NR4A3 gene. NR4A3 is a member of the nuclear receptor family of intracellular transcription factors.

<span class="mw-page-title-main">Hydroxycarboxylic acid receptor 2</span> Protein-coding gene in the species Homo sapiens

Hydroxycarboxylic acid receptor 2 (HCA2), also known as GPR109A and niacin receptor 1 (NIACR1), is a protein which in humans is encoded (its formation is directed) by the HCAR2 gene and in rodents by the Hcar2 gene. The human HCAR2 gene is located on the long (i.e., "q") arm of chromosome 12 at position 24.31 (notated as 12q24.31). Like the two other hydroxycarboxylic acid receptors, HCA1 and HCA3, HCA2 is a G protein-coupled receptor (GPCR) located on the surface membrane of cells. HCA2 binds and thereby is activated by D-β-hydroxybutyric acid (hereafter termed β-hydroxybutyric acid), butyric acid, and niacin (also known as nicotinic acid). β-Hydroxybutyric and butyric acids are regarded as the endogenous agents that activate HCA2. Under normal conditions, niacin's blood levels are too low to do so: it is given as a drug in high doses in order to reach levels that activate HCA2.

<span class="mw-page-title-main">Colony stimulating factor 1 receptor</span> Protein found in humans

Colony stimulating factor 1 receptor (CSF1R), also known as macrophage colony-stimulating factor receptor (M-CSFR), and CD115, is a cell-surface protein encoded by the human CSF1R gene. CSF1R is a receptor that can be activated by two ligands: colony stimulating factor 1 (CSF-1) and interleukin-34 (IL-34). CSF1R is highly expressed in myeloid cells, and CSF1R signaling is necessary for the survival, proliferation, and differentiation of many myeloid cell types in vivo and in vitro. CSF1R signaling is involved in many diseases and is targeted in therapies for cancer, neurodegeneration, and inflammatory bone diseases.

<span class="mw-page-title-main">Granulin</span> Protein-coding gene in humans

Granulin is a protein that in humans is encoded by the GRN gene. Each granulin protein is cleaved from the precursor progranulin, a 593 amino-acid-long and 68.5 kDa protein. While the function of progranulin and granulin have yet to be determined, both forms of the protein have been implicated in development, inflammation, cell proliferation and protein homeostasis. The 2006 discovery of the GRN mutation in a population of patients with frontotemporal dementia has spurred much research in uncovering the function and involvement in disease of progranulin in the body. While there is a growing body of research on progranulin's role in the body, studies on specific granulin residues are still limited.

<span class="mw-page-title-main">VPS35</span> Protein-coding gene in the species Homo sapiens

Vacuolar protein sorting ortholog 35 (VPS35) is a protein involved in autophagy and is implicated in neurodegenerative diseases, such as Parkinson's disease (PD) and Alzheimer's disease (AD). VPS35 is part of a complex called the retromer, which is responsible for transporting select cargo proteins between vesicular structures and the Golgi apparatus. Mutations in the VPS35 gene (VPS35) cause aberrant autophagy, where cargo proteins fail to be transported and dysfunctional or unnecessary proteins fail to be degraded. There are numerous pathways affected by altered VPS35 levels and activity, which have clinical significance in neurodegeneration. There is therapeutic relevance for VPS35, as interventions aimed at correcting VPS35 function are in speculation.

<span class="mw-page-title-main">PITX3</span> Protein-coding gene

Pituitary homeobox 3 is a protein that in humans is encoded by the PITX3 gene.

<span class="mw-page-title-main">TREM2</span> Protein-coding gene in the species Homo sapiens

Triggering receptor expressed on myeloid cells 2(TREM2) is a protein that in humans is encoded by the TREM2 gene. TREM2 is expressed on macrophages, immature monocyte-derived dendritic cells, osteoclasts, and microglia, which are immune cells in the central nervous system. In the liver, TREM2 is expressed by several cell types, including macrophages, that respond to injury. In the intestine, TREM2 is expressed by myeloid-derived dendritic cells and macrophage. TREM2 is overexpressed in many tumor types and has anti-inflammatory activities. It might therefore be a good therapeutic target.

<span class="mw-page-title-main">Quinolinic acid</span> Dicarboxylic acid with pyridine backbone

Quinolinic acid, also known as pyridine-2,3-dicarboxylic acid, is a dicarboxylic acid with a pyridine backbone. It is a colorless solid. It is the biosynthetic precursor to niacin.

Gene therapy in Parkinson's disease consists of the creation of new cells that produce a specific neurotransmitter (dopamine), protect the neural system, or the modification of genes that are related to the disease. Then these cells are transplanted to a patient with the disease. There are different kinds of treatments that focus on reducing the symptoms of the disease but currently there is no cure.

Neuroinflammation is inflammation of the nervous tissue. It may be initiated in response to a variety of cues, including infection, traumatic brain injury, toxic metabolites, or autoimmunity. In the central nervous system (CNS), including the brain and spinal cord, microglia are the resident innate immune cells that are activated in response to these cues. The CNS is typically an immunologically privileged site because peripheral immune cells are generally blocked by the blood–brain barrier (BBB), a specialized structure composed of astrocytes and endothelial cells. However, circulating peripheral immune cells may surpass a compromised BBB and encounter neurons and glial cells expressing major histocompatibility complex molecules, perpetuating the immune response. Although the response is initiated to protect the central nervous system from the infectious agent, the effect may be toxic and widespread inflammation as well as further migration of leukocytes through the blood–brain barrier may occur.

<span class="mw-page-title-main">Pathophysiology of Parkinson's disease</span> Medical condition

The pathophysiology of Parkinson's disease is death of dopaminergic neurons as a result of changes in biological activity in the brain with respect to Parkinson's disease (PD). There are several proposed mechanisms for neuronal death in PD; however, not all of them are well understood. Five proposed major mechanisms for neuronal death in Parkinson's Disease include protein aggregation in Lewy bodies, disruption of autophagy, changes in cell metabolism or mitochondrial function, neuroinflammation, and blood–brain barrier (BBB) breakdown resulting in vascular leakiness.

Microglia are the primary immune cells of the central nervous system, similar to peripheral macrophages. They respond to pathogens and injury by changing morphology and migrating to the site of infection/injury, where they destroy pathogens and remove damaged cells.

<span class="mw-page-title-main">9-Methyl-β-carboline</span> Chemical compound

9-Methyl-β-carboline (9-Me-BC) is a heterocyclic amine of the β-carboline family, and a research chemical.

Malú G. Tansey is an American Physiologist and Neuroscientist as well as the Director of the Center for Translational Research in Neurodegenerative Disease at the University of Florida. Tansey holds the titles of Evelyn F. and William L. McKnight Brain Investigator and Norman Fixel Institute for Neurological Diseases Investigator. As the principal investigator of the Tansey Lab, Tansey guides a research program centered around investigating the role of neuroimmune interactions in the development and progression of neurodegenerative and neuropsychiatric disease. Tansey's work is primarily focused on exploring the cellular and molecular basis of peripheral and central inflammation in the pathology of age-related neurodegenerative diseases like Alzheimer's disease and amyotrophic lateral sclerosis.

<span class="mw-page-title-main">Animal models of Parkinson's disease</span> Models used in Parkinsons disease research

Animal models of Parkinson's disease are essential in the research field and widely used to study Parkinson's disease. Parkinson's disease is a neurodegenerative disorder, characterized by the loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc). The loss of the dopamine neurons in the brain, results in motor dysfunction, ultimately causing the four cardinal symptoms of PD: tremor, rigidity, postural instability, and bradykinesia. It is the second most prevalent neurodegenerative disease, following Alzheimer's disease. It is estimated that nearly one million people could be living with PD in the United States.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000153234 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000026826 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Okabe T, Takayanagi R, Imasaki K, Haji M, Nawata H, Watanabe T (April 1995). "cDNA cloning of a NGFI-B/nur77-related transcription factor from an apoptotic human T cell line". Journal of Immunology. 154 (8): 3871–3879. doi: 10.4049/jimmunol.154.8.3871 . PMID   7706727. S2CID   36075352.
  6. Sacchetti P, Carpentier R, Ségard P, Olivé-Cren C, Lefebvre P (2006). "Multiple signaling pathways regulate the transcriptional activity of the orphan nuclear receptor NURR1". Nucleic Acids Research. 34 (19): 5515–5527. doi:10.1093/nar/gkl712. PMC   1636490 . PMID   17020917.
  7. "Entrez Gene: NR4A2 nuclear receptor subfamily 4, group A, member 2".
  8. 1 2 Yi SH, He XB, Rhee YH, Park CH, Takizawa T, Nakashima K, Lee SH (February 2014). "Foxa2 acts as a co-activator potentiating expression of the Nurr1-induced DA phenotype via epigenetic regulation". Development. 141 (4): 761–772. doi: 10.1242/dev.095802 . PMID   24496614. S2CID   16677797.
  9. Barge-Schaapveld, Leppa, Reuter. "Gene: NR4a2 -". SFARI GENE. Retrieved 16 January 2023.
  10. Saijo K, Winner B, Carson CT, Collier JG, Boyer L, Rosenfeld MG, et al. (April 2009). "A Nurr1/CoREST pathway in microglia and astrocytes protects dopaminergic neurons from inflammation-induced death". Cell. 137 (1): 47–59. doi:10.1016/j.cell.2009.01.038. PMC   2754279 . PMID   19345186.
  11. Codina A, Benoit G, Gooch JT, Neuhaus D, Perlmann T, Schwabe JW (December 2004). "Identification of a novel co-regulator interaction surface on the ligand binding domain of Nurr1 using NMR footprinting". The Journal of Biological Chemistry. 279 (51): 53338–53345. doi: 10.1074/jbc.M409096200 . PMID   15456745.
  12. Kim JY, Koh HC, Lee JY, Chang MY, Kim YC, Chung HY, et al. (June 2003). "Dopaminergic neuronal differentiation from rat embryonic neural precursors by Nurr1 overexpression". Journal of Neurochemistry. 85 (6): 1443–1454. doi: 10.1046/j.1471-4159.2003.01780.x . PMID   12787064. S2CID   21991471.
  13. Zhang L, Le W, Xie W, Dani JA (May 2012). "Age-related changes in dopamine signaling in Nurr1 deficient mice as a model of Parkinson's disease". Neurobiology of Aging. 33 (5): 1001.e7–1001.16. doi:10.1016/j.neurobiolaging.2011.03.022. PMC   3155628 . PMID   21531044.
  14. Zhang L, Cen L, Qu S, Wei L, Mo M, Feng J, et al. (Apr 2016). "Enhancing Beta-Catenin Activity via GSK3beta Inhibition Protects PC12 Cells against Rotenone Toxicity through Nurr1 Induction". PLOS ONE. 11 (4): e0152931. Bibcode:2016PLoSO..1152931Z. doi: 10.1371/journal.pone.0152931 . PMC   4821554 . PMID   27045591.
  15. Jacobs FM, van Erp S, van der Linden AJ, von Oerthel L, Burbach JP, Smidt MP (February 2009). "Pitx3 potentiates Nurr1 in dopamine neuron terminal differentiation through release of SMRT-mediated repression". Development. 136 (4): 531–540. doi:10.1242/dev.029769. PMID   19144721. S2CID   5989601.
  16. 1 2 Perlmann T, Jansson L (April 1995). "A novel pathway for vitamin A signaling mediated by RXR heterodimerization with NGFI-B and NURR1". Genes & Development. 9 (7): 769–782. doi: 10.1101/gad.9.7.769 . PMID   7705655.

Further reading