Lithium nickel cobalt aluminium oxides

Last updated

The lithium nickel cobalt aluminium oxides (abbreviated as Li-NCA, LNCA, or NCA) are a group of mixed metal oxides. Some of them are important due to their application in lithium ion batteries. NCAs are used as active material in the positive electrode (which is the cathode when the battery is discharged). NCAs are composed of the cations of the chemical elements lithium, nickel, cobalt and aluminium. The compounds of this class have a general formula LiNixCoyAlzO2 with x + y + z = 1. In case of the NCA comprising batteries currently available on the market, which are also used in electric cars and electric appliances, x  0.8, and the voltage of those batteries is between 3.6 V and 4.0 V, at a nominal voltage of 3.6 V or 3.7 V. A version of the oxides currently in use in 2019 is LiNi0.84Co0.12Al0.04O2.

Contents

Properties of NCA

The usable charge storage capacity of NCA is about 180 to 200 mAh/g. [1] This is well below the theoretical values; for LiNi0.8Co0.15Al0.05O2 this is 279 mAh/g. [2] However, the capacity of NCA is significantly higher than that of alternative materials such as lithium cobalt oxide LiCoO2 with 148 mAh/g, lithium iron phosphate LiFePO4 with 165 mAh/g and NMC 333 LiNi0.33Mn0.33Co0.33O2 with 170 mAh/g. [2] Like LiCoO2 and NMC, NCA belongs to the cathode materials with layer structure. [1] Due to the high voltage, NCA enables batteries with high energy density. Another advantage of NCA is its excellent fast charging capability. [1] Disadvantages are the high costs and the limited resources of cobalt and nickel. [1]

The two materials NCA and NMC have related structures, quite similar electrochemical behaviour and show similar performance, in particular relatively high energy densities and relatively high performance. Noteworthy, Ni is cycled during the battery operation between oxidation states +2 and +3.5, Co- between +2 and +3, and Mn and Al remain electrochemically inactive. [3]

It is estimated that the NCA battery pack Tesla Model 3 contains between 4.5 and 9.5 kg of cobalt and 11.6 kg of lithium. [4]

Kristallstruktur Cadmiumiodid.png

Lithium nickel oxide LiNiO2, which is closely related to NCA, or nickel oxide NiO2 itself, cannot yet be used as a battery material because it is mechanically unstable, shows a rapid loss of capacity and has safety issues. [5]

Nickel-rich NCA: advantages and limitations

NCAs LiNixCoyAlzO2 with x ≥ 0.8 are called nickel rich; [6] those compounds are the most important variants of the substance class. The nickel-rich variants are also low in cobalt and therefore have a cost advantage, as cobalt is several times more expensive than nickel. Furthermore, as the nickel content increases, so does the voltage and the mAh/g charge that can be stored in the battery. This is because Co is cycled in a battery between oxidation states +3 and +3.5 (i.e. with 0.5 electron/cobalt atom), while nickel can go between +3 and +4 (i.e. 1 electron/nickel atom). Thus, increasing the molar fraction of nickel in the posode increases both the mAh/g number and the cell voltage. However, as the nickel content increases, the risk of thermal breakdown and premature aging of the battery also increases. When a typical NCA battery is heated to 180 °C, it will thermally run away. [7] If the battery was previously overcharged, thermal run away can occur even at 65 °C. [7] The aluminium ions in NCA increase stability and safety, but they reduce capacity because they do not participate in oxidation and reduction themselves.

Modifications of the material

To make NCA more resistant, in particular for batteries that need to operate at temperatures above 50 °C, the NCA active material is usually coated. The coatings demonstrated in research may comprise fluorides such as aluminium fluoride AlF3, crystalline oxides (e.g. CoO2, TiO2, NMC) or glassy oxides (silicon dioxide SiO2) or phosphates such as FePO4. [2]

NCA batteries: Manufacturers and use

The main producers of NCA and their market shares in 2015 were Sumitomo Metal Mining with 58%, Toda Kogyo (BASF) with 16%, Nihon Kagaku Sangyo with 13% and Ecopro with 5%. [8] Sumitomo supplies Tesla and Panasonic and was able to produce 850 tons of NCA per month in 2014. [9] In 2016, Sumitomo increased its monthly production capacity to 2550 tons, [10] and in 2018 to 4550 tons. [9] In China, in Tongren County in Qinghai Province, a plant has been under construction since 2019, which will initially produce 1500 tons of NCA per month. [11]

As of 2018, the most important manufacturer of NCA batteries was reportedly Panasonic, or Panasonic's cooperation partner Tesla, [2] as Tesla uses NCA as active material in the traction batteries of its car models. [12] [13] In Tesla Model 3 [5] and Tesla Model X, LiNi0.84Co0.12Al0.04O2 is used. [14] With a few exceptions, current electric cars as of 2019 use either NCA or alternatively lithium nickel manganese cobalt oxides (NMC). [5] In addition to use in electric cars, NCA is also used in batteries for electronic devices, mainly by Panasonic, Sony and Samsung. [8] Some cordless vacuum cleaners are also equipped with NCA batteries. [15] [ better source needed ]

Related Research Articles

<span class="mw-page-title-main">Nickel–metal hydride battery</span> Type of rechargeable battery

A nickel–metal hydride battery is a type of rechargeable battery. The chemical reaction at the positive electrode is similar to that of the nickel-cadmium cell (NiCd), with both using nickel oxide hydroxide (NiOOH). However, the negative electrodes use a hydrogen-absorbing alloy instead of cadmium. NiMH batteries can have two to three times the capacity of NiCd batteries of the same size, with significantly higher energy density, although only about half that of lithium-ion batteries.

<span class="mw-page-title-main">Lithium-ion battery</span> Rechargeable battery type

A lithium-ion or Li-ion battery is a type of rechargeable battery that uses the reversible intercalation of Li+ ions into electronically conducting solids to store energy. In comparison with other commercial rechargeable batteries, Li-ion batteries are characterized by higher specific energy, higher energy density, higher energy efficiency, a longer cycle life, and a longer calendar life. Also noteworthy is a dramatic improvement in lithium-ion battery properties after their market introduction in 1991: within the next 30 years, their volumetric energy density increased threefold while their cost dropped tenfold.

<span class="mw-page-title-main">Rechargeable battery</span> Type of electrical battery

A rechargeable battery, storage battery, or secondary cell, is a type of electrical battery which can be charged, discharged into a load, and recharged many times, as opposed to a disposable or primary battery, which is supplied fully charged and discarded after use. It is composed of one or more electrochemical cells. The term "accumulator" is used as it accumulates and stores energy through a reversible electrochemical reaction. Rechargeable batteries are produced in many different shapes and sizes, ranging from button cells to megawatt systems connected to stabilize an electrical distribution network. Several different combinations of electrode materials and electrolytes are used, including lead–acid, zinc–air, nickel–cadmium (NiCd), nickel–metal hydride (NiMH), lithium-ion (Li-ion), lithium iron phosphate (LiFePO4), and lithium-ion polymer.

<span class="mw-page-title-main">AA battery</span> Type of battery

The AA battery is a standard size single cell cylindrical dry battery. The IEC 60086 system calls the size R6, and ANSI C18 calls it 15. It is named UM-3 by JIS of Japan. Historically, it is known as D14, U12 – later U7, or HP7 in official documentation in the United Kingdom, or a pen cell.

<span class="mw-page-title-main">Molten-salt battery</span> Type of battery that uses molten salts

Molten-salt batteries are a class of battery that uses molten salts as an electrolyte and offers both a high energy density and a high power density. Traditional non-rechargeable thermal batteries can be stored in their solid state at room temperature for long periods of time before being activated by heating. Rechargeable liquid-metal batteries are used for industrial power backup, special electric vehiclesand for grid energy storage, to balance out intermittent renewable power sources such as solar panels and wind turbines.

<span class="mw-page-title-main">Lithium iron phosphate battery</span> Type of rechargeable battery

The lithium iron phosphate battery or LFP battery is a type of lithium-ion battery using lithium iron phosphate as the cathode material, and a graphitic carbon electrode with a metallic backing as the anode. Because of their low cost, high safety, low toxicity, long cycle life and other factors, LFP batteries are finding a number of roles in vehicle use, utility-scale stationary applications, and backup power. LFP batteries are cobalt-free. As of September 2022, LFP type battery market share for EVs reached 31%, and of that, 68% was from Tesla and Chinese EV maker BYD production alone. Chinese manufacturers currently hold a near monopoly of LFP battery type production. With patents having started to expire in 2022 and the increased demand for cheaper EV batteries, LFP type production is expected to rise further and surpass lithium nickel manganese cobalt oxides (NMC) type batteries in 2028.

<span class="mw-page-title-main">Lithium iron phosphate</span> Chemical compound

Lithium iron phosphate or lithium ferro-phosphate (LFP) is an inorganic compound with the formula LiFePO
4
. It is a gray, red-grey, brown or black solid that is insoluble in water. The material has attracted attention as a component of lithium iron phosphate batteries, a type of Li-ion battery. This battery chemistry is targeted for use in power tools, electric vehicles, solar energy installations and more recently large grid-scale energy storage.

<span class="mw-page-title-main">Lithium cobalt oxide</span> Chemical compound

Lithium cobalt oxide, sometimes called lithium cobaltate or lithium cobaltite, is a chemical compound with formula LiCoO
2
. The cobalt atoms are formally in the +3 oxidation state, hence the IUPAC name lithium cobalt(III) oxide.

<span class="mw-page-title-main">Electric vehicle battery</span> Battery used to power the electric motors of a battery electric vehicle or hybrid electric vehicle

An electric vehicle battery is a rechargeable battery used to power the electric motors of a battery electric vehicle (BEV) or hybrid electric vehicle (HEV).

<span class="mw-page-title-main">Electric battery</span> Power source with electrochemical cells

An electric battery is a source of electric power consisting of one or more electrochemical cells with external connections for powering electrical devices. When a battery is supplying power, its positive terminal is the cathode and its negative terminal is the anode. The terminal marked negative is the source of electrons that will flow through an external electric circuit to the positive terminal. When a battery is connected to an external electric load, a redox reaction converts high-energy reactants to lower-energy products, and the free-energy difference is delivered to the external circuit as electrical energy. Historically the term "battery" specifically referred to a device composed of multiple cells; however, the usage has evolved to include devices composed of a single cell.

<span class="mw-page-title-main">Solid-state battery</span> Battery with solid electrodes and a solid electrolyte

A solid-state battery is an electrical battery that uses a solid electrolyte to conduct ion movements between the electrodes, instead of the liquid or polymer gel electrolytes found in conventional batteries. Solid-state batteries theoretically offer much higher energy density than the typical lithium-ion or lithium polymer batteries.

The lithium–air battery (Li–air) is a metal–air electrochemical cell or battery chemistry that uses oxidation of lithium at the anode and reduction of oxygen at the cathode to induce a current flow.

<span class="mw-page-title-main">Sodium-ion battery</span> Type of rechargeable battery

Sodium-ion batteries (NIBs, SIBs, or Na-ion batteries) are several types of rechargeable batteries, which use sodium ions (Na+) as its charge carriers. In some cases, its working principle and cell construction are similar to those of lithium-ion battery (LIB) types, but it replaces lithium with sodium as the intercalating ion. Sodium belongs to the same group in the periodic table as lithium and thus has similar chemical properties. Although, in some cases (such as aqueous Na-ion batteries) they are quite different from Li-ion batteries.

Aluminium-ion batteries are a class of rechargeable battery in which aluminium ions serve as charge carriers. Aluminium can exchange three electrons per ion. This means that insertion of one Al3+ is equivalent to three Li+ ions. Thus, since the ionic radii of Al3+ (0.54 Å) and Li+ (0.76 Å) are similar, significantly higher numbers of electrons and Al3+ ions can be accepted by cathodes with little damage. Al has 50 times (23.5 megawatt-hours m-3) the energy density of Li and is even higher than coal.

Research in lithium-ion batteries has produced many proposed refinements of lithium-ion batteries. Areas of research interest have focused on improving energy density, safety, rate capability, cycle durability, flexibility, and cost.

Khalil Amine is a materials scientist at Argonne National Laboratory, an Argonne distinguished fellow, and group leader of the Battery Technology group. His research team is focused on the development of advanced battery systems for transportation applications. In addition to his Argonne appointment, he is an adjunct professor at Stanford University, Imam Abdulrahman Bin Faisal University, Hong Kong University of Science & Technology, King Abdulaziz University, Hanyang University, and Peking University.

<span class="mw-page-title-main">Lithium nickel manganese cobalt oxides</span> Lithium ion battery cathode material

Lithium nickel manganese cobalt oxides (abbreviated NMC, Li-NMC, LNMC, or NCM) are mixed metal oxides of lithium, nickel, manganese and cobalt with the general formula LiNixMnyCo1-x-yO2. These materials are commonly used in lithium-ion batteries for mobile devices and electric vehicles, acting as the positively charged cathode.

<span class="mw-page-title-main">Redwood Materials</span> Sustainable battery materials company

Redwood Materials, Inc. is an American company headquartered in Carson City, Nevada. The company aims to recycle lithium-ion batteries and produce battery materials for electromobility and electrical storage systems. Redwood Materials was reported to have a valuation of about $3.7 billion as of July 2021.

A solid-state silicon battery or silicon-anode all-solid-state battery is a type of rechargeable lithium-ion battery consisting of a solid electrolyte, solid cathode, and silicon-based solid anode.

<span class="mw-page-title-main">History of the lithium-ion battery</span> Overview of the events of the development of lithium-ion battery

This is a history of the lithium-ion battery.

References

  1. 1 2 3 4 Marca M. Doeff (2013), Ralph J. Brodd (ed.), "Battery Cathodes: Selected Entries from the Encyclopedia of Sustainability Science and Technology", Batteries for Sustainability, New York, NY: Springer, p. 5–49, doi:10.1007/978-1-4614-5791-6_2, ISBN   978-1-4614-5790-9
  2. 1 2 3 4 Agus Purwanto; Cornelius Satria Yudha; U Ubaidillah; Hendri Widiyandari; Takashi Ogi (2018-09-26), "NCA cathode material: synthesis methods and performance enhancement efforts", Materials Research Express, vol. 5, no. 12, IOP Publishing, p. 122001, Bibcode:2018MRE.....5l2001P, doi:10.1088/2053-1591/aae167, ISSN   2053-1591, S2CID   106388037
  3. A reflection on lithium-ion battery cathode chemistry. 2020. Nature Communications. 11/1, 9. A. Manthiram. doi: 10.1038/s41467-020-15355-0.
  4. Evan Leon (2018-10-26). "From Mine to Market: Energy Metals & Electric Vehicle Industrialization" (PDF). Energy.umich.edu. University of Michigan Energy Institute. Archived from the original (PDF) on 2019-06-16.
  5. 1 2 3 Matteo Bianchini; Maria Roca-Ayats; Pascal Hartmann; Torsten Brezesinski; Jürgen Janek (2019-07-29), "There and Back Again-The Journey of LiNiO2 as a Cathode Active Material" , Angewandte Chemie International Edition, vol. 58, no. 31, Wiley-VCH, pp. 10434–10458, doi:10.1002/anie.201812472, PMID   30537189, S2CID   54479125 , retrieved 2021-11-26
  6. Sheng S. Zhang (January 2020), "Problems and their origins of Ni-rich layered oxide cathode materials" , Energy Storage Materials, vol. 24, pp. 247–254, retrieved 2021-11-26
  7. 1 2 Xuan Liu; Kang Li; Xiang Li (2018). "The Electrochemical Performance and Applications of Several Popular Lithium-ion Batteries for Electric Vehicles - A Review". In K. Li; J. Zhang; M. Chen; Z. Yang; Q. Niu (eds.). Advances in Green Energy Systems and Smart Grid. ICSEE 2018, IMIOT 2018. Communications in Computer and Information Science. Vol. 925. Springer, Singapore. pp. 201–213. doi:10.1007/978-981-13-2381-2_19. ISBN   9789811323805 . Retrieved 2021-11-26. See also this alternative academic article source.
  8. 1 2 Christophe Pillot (2017-01-30). "Lithium ion battery raw material Supply & demand 2016–2025" (PDF). avicenne.com. Avicenne.
  9. 1 2 Yuka Obayashi, Ritsuko Shimizu (2018-09-13). "Japan's Sumitomo to focus on battery material supply to Panasonic, Toyota". Reuters.
  10. James Ayre (2016-02-26). "Sumitomo Metal Mining Boosting NCA (Used In Lithium-Ion Cathodes) Production By 38 %, In Anticipation Of Tesla Model 3 Launch". evobsession.com.[ permanent dead link ]
  11. Frank Liu (2019-11-13). "Construction of 50,000 mt NCA cathode material project began in Qinghai". SMM News – News.metal.com > News > Industry News. Shanghai Metals Market SMM, SMM Information & Technology Co.
  12. James Ayre (2017-12-02). "Tesla Batteries 101 — Production Capacity, Uses, Chemistry, & Future Plans". CleanTechnica .
  13. Fred Lambert (2017-05-04). "Tesla battery researcher unveils new chemistry to increase lifecycle at high voltage". Electrek. Electrek, 9to5 network.
  14. Gyeong Won Nam; Nam-Yung Park; Kang-Joon Park; Jihui Yang; Jun Liu (2019-12-13), "Capacity Fading of Ni-Rich NCA Cathodes: Effect of Microcracking Extent" , ACS Energy Letters, vol. 4, no. 12, pp. 2995–3001, doi:10.1021/acsenergylett.9b02302, ISSN   2380-8195, S2CID   210234684 , retrieved 2021-11-26
  15. "Dyson Cordless Vacuum Comparison Chart: Comparing Best With The Best - Powertoollab". Best Power Tools for Sale, Expert Reviews and Guides. 2018-08-22.[ better source needed ]