Anastrepha | |
---|---|
Anastrepha suspensa | |
Scientific classification | |
Domain: | Eukaryota |
Kingdom: | Animalia |
Phylum: | Arthropoda |
Class: | Insecta |
Order: | Diptera |
Family: | Tephritidae |
Subfamily: | Trypetinae |
Tribe: | Toxotrypanini |
Genus: | Anastrepha Schiner, 1868 |
Synonyms | |
Anastrepha is the most diverse genus in the American tropics and subtropics. Currently, it comprises more than 300 described species, including nine major pest species, such as the Mexican fruit fly (A. ludens), the South American fruit fly (A. fraterculus complex), the West Indian fruit fly ( A. obliqua ), the sapote fruit fly (A. serpentina), the Caribbean fruit fly (A. suspensa), the American guava fruit fly (A. striata), and the pumpkin fruit fly ( A. grandis ), as well as the papaya fruit fly (formerly Toxotrypana curvicada). As some of their names suggest, these pest species are one of the most numerous and damaging groups of insects in their native range, [1] plaguing commercial fruits such as citrus, mango, guava, and papaya.
Females lay their eggs in either developing and healthy fruits or in mature and rotten fruit (like the A. suspensa). The vast majority of species use their ovipositor to deposit the eggs in the edible part of the fruit (either the epicarp or mesocarp), and some species such as A. hamata and A. intermedia lay the eggs in the seed. [2] [3] [4] Eggs can be laid in one or a group of eggs per oviposition, and it could vary among species. [5] After the egg hatches inside the fruit, larvae complete three larval instars. Once larvae are fully mature make a hole to come out of the fruit, and it most happen when the fruit is on the ground. Then, the larva makes a hole on the ground to become a pupa. The life cycle begin again when the female emerge and become mature to produce eggs by feeding on sources of carbohydrate and protein. [5] The life cycle (egg to adult) of Anastrepha ludens takes 27 days or longer if the temperature is lower than 30 °C. [6]
Natural enemies are mainly in the families Braconidae and Ichneumonidae (Hymenoptera). Diachasmimorphalongicaudata and Doryctobracon crawfordi are established in the Americas, including the United States, Mexico, Colombia, Costa Rica, Guatemala, El Salvador, Nicaragua, Panama, and Brazil. These species has been released as an agent of biological control of pest species, such as A. ludens, A. obliqua, A. suspensa. [7]
Larvae attack plants in the families Sapotaceae, Moraceae, Malvaceae, Myrtaceae, Passifloraceae, Anacardiaceae, and Rutaceae. Larvae feed on the pulp or on the seeds. [8] Host plant information for the major pest species is available online in the Compendium of Fruit Fly Host Information (https://coffhi.cphst.org/).
Species of this genus are found across a wide range of altitude and habitats. The gradient of altitude has been documented from 0 - 2.600 m above sea level, but the highest diversity is found below 1,000 m. One extreme exception is the morphotype Brazil 1 in the Anastrepha fraterculus complex that attacks peach, apple, cherry and other host in a dry, temperate and high valley system (Valle Sagrado de los Incas, Cusco, Peru) at 2,600 m. Common pest species are abundant and found in crops, orchards, backyard trees, and rare species occur in secondary or primary forest, and edges or boundaries of patches of forest between 750–820 m. [9] Anastrepha is mainly associated with tropical rainforests, but it is also found in subtropical regions such as southern of Florida. However, Anastrepha tehuacana was described and documented from the Mojave Desert in Puebla, Mexico, and it feeds on seeds of Euphorbia tehuacana. [10]
Anastrepha is morphologically and molecularly classified in 23 species group. [11] However, the most recent molecular phylogeny suggested to split the genus in 27 groups, including those species in the former genus Toxotrypana. [12] Norrbom et al. proposed to synonymize Toxotrypana and keep the genus name Anastrepha because it comprises more pest species of agricultural importance. [13] [14] Also, they proposed nomenclature changes where all the seven originally described species in Toxotrypana are now under the genus Anastrepha as follows: Anastrepha australis (Blanchard 1960), Anastrepha curvicauda (Gerstaecker 1860), Anastrepha littoralis (Blanchard 1960), Anastrepha nigra (Blanchard 1960), Anastrepha picciola (Blanchard 1960), Anastrepha proseni (Blanchard 1960), Anastrepha recurcauda (Tigrero 1992). Additionally, a new name was assigned to the species previously known Anastrepha nigra Norrbom & Korytkowski, 2009 which is now Anastrepha nigrina Norrbom, 2018 because of priority rule.
The Anastrepha fraterculus complex is still a mystery that remains unsolved. This began in 1942 when Stone observed morphological differences between populations from Central America and South America. [15] Since then, adult and larvae morphology, molecular, isozyme, karyotype, host plants relationships, behavioral and mating compatibility have been studied. The conclusion from a group with multidisciplinary expertise is that Anastrepha fraterculus sensu latus comprises eight cryptic species (morphotypes) with a wide range of geographical distribution. [16] [17] [18] One of them occur in Mexico and Central America (Mexican morphotype), and seven are found in South America (Colombia, Venezuela, Guianas, Brazil, Paraguay, Bolivia, Argentina, Peru, Ecuador); and four are recognizable and well documented morphotypes (Mexican, Andean, Peruvian and Brazil 1) which are distinguishable and represent biological species. [16] [17] [19] Also, these cryptic species have a wide host plant range, and they attack 124 host plant species in 39 plant families. [20] Thus, eight morphotypes are recognized, geographical distribution and host plant are better understood, but morphological and molecular techniques are still unreliable to identify specimens within this complex. [18] [17] [19]
The Immature stages of Anastrepha are poorly known. There are only 20 Anastrepha species with thorough description of eggs which include photomicroscopy. With regard to larval description, there are only 22 thorough description of the third instar-larval which represent less than 10% of the total number of described species to date. [21] Ideally, a complete larval description should include a combination of drawings and imagery (using compound microscope and SEM) of the morphological structures such as antennal and maxillary sensory organ, oral ridges, Cephalopharyngeal skeleton (CPS), both dorsal and ventral spinules, and anterior and posterior spiracles. [22] [23] [24] [25] [21]
In addition, larval morphology has not found characters with phylogenetic signal yet. [8] One of the limitation has been acquiring the specimens from a broader range of geographical distribution, and larvae have been mostly described from one location (one country) or colony culture instead. Also, description of third-instar larval is only known from 11 species groups which are mostly represented by one or two Anastrepha species. [21] Thirdly, feeding behavior (pulp or seed feeder) has not been very well documented and included as an evolutionary trait to enhance the phylogeny reconstruction. Thus, collection and description of immature stages of more species is badly needed to identify synapomorphies among the species group.
Thorough knowledge of the morphology of Anastrepha is critical to run a taxonomic key and identify species. Morphological characters on the head, thorax, abdomen and ovipositor are very used in both traditional dichotomous and interactive key. In addition, it is important to know that some species groups in this genus need further revision, so that the identification could be difficult. [11] To date, the most comprehensive identification tool for adult is available online, and it was developed by Norrbom et al. 2019. [11] However, there are 28 more Anastrepha species, which were described by Norrbom in 2015, that are not included yet in the interactive key.
Knowledge of the larval morphology is important to identify genera and species. At least, there are three sources which are helpful for identification, but they are out of date to accurately identify larvae up to level of species. [26] [27] [28] Thorough larval morphology is available online at http://www.delta-intkey.com/ffl/index.htm [28]
There are more than 300 Anastrepha species. This includes seven species from the former genus Toxotrypana, 266 species previously known, and 28 species described by Norrbom in 2015. [29] From that total, thorough description and images of 273 species on the list below are freely available online at http://www.delta-intkey.com/anatox/index.htm. [11]
Species group | Name of species | Species group | Name of species | |
---|---|---|---|---|
benjamini |
| raveni |
| |
caudata |
| robusta, binodosa clade |
| |
daciformis |
| robusta,cryptostrepha clade |
| |
dentata |
| robusta,lambda clade |
| |
doryphoros |
| robusta,robusta clade |
| |
fraterculus |
| robusta,speciosa clade |
| |
grandis |
| robusta, not assigned to a clade |
| |
hastata |
| schausi |
| |
leptozona |
| serpentina |
| |
mucronota |
| spatulata |
| |
panamensis |
| striata | ||
pseudoparallela |
| tripunctata |
| |
punctata |
| Not assigned to a species group |
| |
ramosa |
| curvicauda | Formerly in the genus Toxotrypana
|
Genus Anastrepha is widespread from southern United States (Texas and Florida) to northern Argentina, including Great and Lesser Antilles. The country records include United States, Mexico, Belize, Bolivia, Brazil, Colombia, Costa Rica, Ecuador, British Guiana, French Guiana, Guatemala, Guyana, Honduras, Mexico, Nicaragua, Peru, Suriname, Cuba, Republica Dominicana, Puerto Rico, Jamaica, Trinidad and Tobago, Argentina, Paraguay, and Venezuela. [30]
The apple maggot, also known as the railroad worm, is a species of fruit fly, and a pest of several types of fruits, especially apples. This species evolved about 150 years ago through a sympatric shift from the native host hawthorn to the domesticated apple species Malus domestica in the northeastern United States. This fly is believed to have been accidentally spread to the western United States from the endemic eastern United States region through contaminated apples at multiple points throughout the 20th century. The apple maggot uses Batesian mimicry as a method of defense, with coloration resembling that of the forelegs and pedipalps of a jumping spider.
The Tephritidae are one of two fly families referred to as fruit flies, the other family being the Drosophilidae. The family Tephritidae does not include the biological model organisms of the genus Drosophila, which is often called the "common fruit fly". Nearly 5,000 described species of tephritid fruit fly are categorized in almost 500 genera of the Tephritidae. Description, recategorization, and genetic analyses are constantly changing the taxonomy of this family. To distinguish them from the Drosophilidae, the Tephritidae are sometimes called peacock flies, in reference to their elaborate and colorful markings. The name comes from the Greek τεφρος, tephros, meaning "ash grey". They are found in all the biogeographic realms.
Bactrocera tryoni, the Queensland fruit fly, is a species of fly in the family Tephritidae in the insect order Diptera. B. tryoni is native to subtropical coastal Queensland and northern New South Wales. They are active during the day, but mate at night. B. tryoni lay their eggs in fruit. The larvae then hatch and proceed to consume the fruit, causing the fruit to decay and drop prematurely. B. tryoni are responsible for an estimated $28.5 million a year in damage to Australian crops and are the most costly horticultural pest in Australia. Up to 100% of exposed fruit can be destroyed due to an infestation of this fly species. Previously, pesticides were used to eliminate B. tryoni from damaging crops. However, these chemicals are now banned. Thus, experts devoted to B. tryoni control have transitioned to studying this pests' behaviors to determine a new method of elimination.
The Tephritoidea are a superfamily of flies. It has over 7,800 species, the majority of them in family Tephritidae.
Ceratitis capitata, commonly known as the Mediterranean fruit fly or medfly, is a yellow-and-brown fly native to sub-Saharan Africa. It has no near relatives in the Western Hemisphere and is considered to be one of the most destructive fruit pests in the world. There have been occasional medfly infestations in California, Florida, and Texas that require extensive eradication efforts to prevent the fly from establishing itself in the United States.
The Tachiniscinae are a subfamily of the fruit fly family Tephritidae. They are treated by some authorities as a separate family, Tachiniscidae. An undetermined species of the genus Tachiniscidia has been reared from Saturniidae caterpillars in Nigeria.
Bactrocera dorsalis, previously known as Dacus dorsalis and commonly referred to as the oriental fruit fly, is a species of tephritid fruit fly that is endemic to Southeast Asia. It is one of the major pest species in the genus Bactrocera with a broad host range of cultivated and wild fruits. Male B. dorsalis respond strongly to methyl eugenol, which is used to monitor and estimate populations, as well as to annihilate males as a form of pest control. They are also important pollinators and visitors of wild orchids, Bulbophyllum cheiri and Bulbophyllum vinaceum in Southeast Asia, which lure the flies using methyl eugenol.
The Tephritid Workers Database is a web-based database for sharing information on tephritid fruit flies. Because these species are one of the most economically important group of insect species that threaten fruit and vegetable production and trade worldwide, a tremendous amount of information is made available each year: new technologies developed, new information on their biology and ecology; new control methods made available, new species identified, new outbreaks recorded and new operational control programmes launched. The TWD allows workers to keep up-to-date on the most recent developments and provides an easily accessible and always available resource.
Bactrocera cucurbitae, the melon fly, is a fruit fly of the family Tephritidae. It is a serious agricultural pest, particularly in Hawaii.
Procecidochares is a genus of tephritid or fruit flies in the family Tephritidae.
Stenopa is a genus of tephritid or fruit flies in the family Tephritidae.
Rhagoletis juglandis, also known as the walnut husk fly, is a species of tephritid or fruit fly in the family Tephritidae. It is closely related to the walnut husk maggot Rhagoletis suavis. This species of fly belongs to the R. suavis group, which has a natural history consistent with allopatric speciation. The flies belonging to this group are morphologically distinguishable.
Anastrepha ludens, the Mexican fruit fly or Mexfly, is a species of fly of the Anastrepha genus in the Tephritidae family. It is closely related to the Caribbean fruit fly Anastrepha suspensa, and the papaya fruit fly Anastrepha curvicauda.
Goedenia is a genus of the family Tephritidae, better known as fruit flies.
Epochrinopsis is a genus of the family Tephritidae, better known as fruit flies.
Anastrepha suspensa, known as the Caribbean fruit fly, the Greater Antillean fruit fly, guava fruit fly, or the Caribfly, is a species of tephritid fruit fly. As the names suggest, these flies feed on and develop in a variety of fruits, primarily in the Caribbean. They mainly infest mature to overripe fruits. While thought to have originated in Cuba, the Caribbean fruit fly can now also be found in Florida, Hispaniola, and Puerto Rico.
Tephritini is a tribe of fruit flies in the family Tephritidae. There are about 80 genera and some 1000 described species in Tephritini.
Paracantha gentilis is a species of tephritid or fruit fly in the genus Paracantha of the family Tephritidae. It has a widespread distribution throughout the Western United States, and has also been found as far south as Mexico and Costa Rica. It most closely resembles Paracantha culta, which is widespread in the Southeastern United States, but P. gentilis can be distinguished by having smaller spots on the head.
Bactrocera carambolae, also known as the carambola fruit fly, is a fruit fly species in the family Tephritidae, and is native to Asia. This species was described by Drew and Hancock in 1994.
Anastrepha fraterculus, known as the South American fruit fly, is a fruit fly species from the genus Anastrepha. A. fraterculus is a polyphagous, frugivorous fly that is a significant pest of commercial fruit production in South America.
{{cite journal}}
: CS1 maint: multiple names: authors list (link){{cite web}}
: CS1 maint: multiple names: authors list (link){{cite journal}}
: CS1 maint: multiple names: authors list (link){{cite journal}}
: CS1 maint: multiple names: authors list (link){{cite journal}}
: CS1 maint: multiple names: authors list (link){{cite journal}}
: CS1 maint: multiple names: authors list (link){{cite web}}
: CS1 maint: multiple names: authors list (link){{cite journal}}
: CS1 maint: multiple names: authors list (link){{cite journal}}
: CS1 maint: multiple names: authors list (link){{cite journal}}
: CS1 maint: multiple names: authors list (link){{cite journal}}
: CS1 maint: multiple names: authors list (link){{cite web}}
: CS1 maint: multiple names: authors list (link){{cite journal}}
: CS1 maint: multiple names: authors list (link){{cite journal}}
: CS1 maint: multiple names: authors list (link)