Average cost

Last updated

In economics, average cost (AC) or unit cost is equal to total cost (TC) divided by the number of units of a good produced (the output Q):

Contents

Average cost is an important factor in determining how businesses will choose to price their products.

Short-run average cost

.mw-parser-output .legend{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .legend-color{display:inline-block;min-width:1.25em;height:1.25em;line-height:1.25;margin:1px 0;text-align:center;border:1px solid black;background-color:transparent;color:black}.mw-parser-output .legend-text{}
Average cost (AC) curve
Average variable cost (AVC)
Average fixed cost (AFC)
Marginal cost (MC; crosses the minimum points of both the AC and AFC curves) Shortruncostcurves.jpg
  Average cost (AC) curve
   Marginal cost (MC; crosses the minimum points of both the AC and AFC curves)

Short-run costs are those that vary with almost no time lagging. Labor cost and the cost of raw materials are short-run costs, but physical capital is not.

An average cost curve can be plotted with cost on the vertical axis and quantity on the horizontal axis. Marginal costs are often also shown on these graphs, with marginal cost representing the cost of the last unit produced at each point; marginal costs in the short run are the slope of the variable cost curve (and hence the first derivative of variable cost).

A typical average cost curve has a U-shape, because fixed costs are all incurred before any production takes place and marginal costs are typically increasing, because of diminishing marginal productivity. In this "typical" case, for low levels of production marginal costs are below average costs, so average costs are decreasing as quantity increases. An increasing marginal cost curve intersects a U-shaped average cost curve at the latter's minimum, after which the average cost curve begins to slope upward. For further increases in production beyond this minimum, marginal cost is above average costs, so average costs are increasing as quantity increases. For example: for a factory designed to produce a specific quantity of widgets per period—below a certain production level, average cost is higher due to under-used equipment, and above that level, production bottlenecks increase average cost.

Long-run average cost

Long-run average cost is the unit cost of producing a certain output when all inputs, even physical capital, are variable. The behavioral assumption is that the firm will choose that combination of inputs that produce the desired quantity at the lowest possible cost.

A long-run average cost curve is typically downward sloping at relatively low levels of output, and upward or downward sloping at relatively high levels of output. Most commonly, the long-run average cost curve is U-shaped, by definition reflecting economies of scale where negatively sloped and diseconomies of scale where positively sloped.

If the firm is a perfect competitor in all input markets, and thus the per-unit prices of all its inputs are unaffected by how much of the inputs the firm purchases, then it can be shown [1] [2] [3] that at a particular level of output, the firm has economies of scale (i.e., is operating in a downward sloping region of the long-run average cost curve) if and only if it has increasing returns to scale, the latter being exclusively a feature of the production function. Likewise, it has diseconomies of scale (is operating in an upward sloping region of the long-run average cost curve) if and only if it has decreasing returns to scale, and has neither economies nor diseconomies of scale if it has constant returns to scale. With perfect competition in the output market the long-run market equilibrium will involve all firms operating at the minimum point of their long-run average cost curves (i.e., at the borderline between economies and diseconomies of scale).

If, however, the firm is not a perfect competitor in the input markets, then the above conclusions are modified. For example, if there are increasing returns to scale in some range of output levels, but the firm is so big in one or more input markets that increasing its purchases of an input drives up the input's per-unit cost, then the firm could have diseconomies of scale in that range of output levels. Conversely, if the firm is able to get bulk discounts of an input, then it could have economies of scale in some range of output levels even if it has decreasing returns in production in that output range.

In some industries, long-run average cost is always declining (economies of scale exist indefinitely). This means that the largest firm tends to have a cost advantage, and the industry tends naturally to become a monopoly, and hence is called a natural monopoly. Natural monopolies tend to exist in industries with high capital costs in relation to variable costs, such as water supply and electricity supply.

Relationship to marginal cost

When average cost is declining as output increases, marginal cost is less than average cost. When average cost is rising, marginal cost is greater than average cost. When average cost is neither rising nor falling (at a minimum or maximum), marginal cost equals average cost.

Other special cases for average cost and marginal cost appear frequently:

Relationship between AC, AFC, AVC and MC

1. The Average Fixed Cost curve (AFC) starts from a height and goes on declining continuously as production increases.

2. The Average Variable Cost curve, Average Cost curve and the Marginal Cost curve start from a height, reach the minimum points, then rise sharply and continuously.

3. The Average Fixed Cost curve approaches zero asymptotically. The Average Variable Cost curve is never parallel to or as high as the Average Cost curve due to the existence of positive Average Fixed Costs at all levels of production; but the Average Variable Cost curve asymptotically approaches the Average Cost curve from below.

4. The Marginal Cost curve always passes through the minimum points of the Average Variable Cost and Average Cost curves, though the Average Variable Cost curve attains the minimum point prior to that of the Average Cost curve.

See also

Related Research Articles

<span class="mw-page-title-main">Economies of scale</span> Cost advantages obtained via scale of operation

In microeconomics, economies of scale are the cost advantages that enterprises obtain due to their scale of operation, and are typically measured by the amount of output produced per unit of time. A decrease in cost per unit of output enables an increase in scale. At the basis of economies of scale, there may be technical, statistical, organizational or related factors to the degree of market control. This is just a partial description of the concept.

<span class="mw-page-title-main">Microeconomics</span> Behavior of individuals and firms

Microeconomics is a branch of mainstream economics that studies the behavior of individuals and firms in making decisions regarding the allocation of scarce resources and the interactions among these individuals and firms. Microeconomics focuses on the study of individual markets, sectors, or industries as opposed to the national economy as a whole, which is studied in macroeconomics.

In economics, specifically general equilibrium theory, a perfect market, also known as an atomistic market, is defined by several idealizing conditions, collectively called perfect competition, or atomistic competition. In theoretical models where conditions of perfect competition hold, it has been demonstrated that a market will reach an equilibrium in which the quantity supplied for every product or service, including labor, equals the quantity demanded at the current price. This equilibrium would be a Pareto optimum.

<span class="mw-page-title-main">Profit maximization</span> Process to determine the highest profits for a firm

In economics, profit maximization is the short run or long run process by which a firm may determine the price, input and output levels that will lead to the highest possible total profit. In neoclassical economics, which is currently the mainstream approach to microeconomics, the firm is assumed to be a "rational agent" which wants to maximize its total profit, which is the difference between its total revenue and its total cost.

The following outline is provided as an overview of and topical guide to industrial organization:

In economics, the marginal cost is the change in the total cost that arises when the quantity produced is incremented, the cost of producing additional quantity. In some contexts, it refers to an increment of one unit of output, and in others it refers to the rate of change of total cost as output is increased by an infinitesimal amount. As Figure 1 shows, the marginal cost is measured in dollars per unit, whereas total cost is in dollars, and the marginal cost is the slope of the total cost, the rate at which it increases with output. Marginal cost is different from average cost, which is the total cost divided by the number of units produced.

<span class="mw-page-title-main">Production–possibility frontier</span> Visualization of all possible options of output for a two-good economy

In microeconomics, a production–possibility frontier (PPF), production possibility curve (PPC), or production possibility boundary (PPB) is a graphical representation showing all the possible options of output for two goods that can be produced using all factors of production, where the given resources are fully and efficiently utilized per unit time. A PPF illustrates several economic concepts, such as allocative efficiency, economies of scale, opportunity cost, productive efficiency, and scarcity of resources.

<span class="mw-page-title-main">Production function</span> Used to define marginal product and to distinguish allocative efficiency

In economics, a production function gives the technological relation between quantities of physical inputs and quantities of output of goods. The production function is one of the key concepts of mainstream neoclassical theories, used to define marginal product and to distinguish allocative efficiency, a key focus of economics. One important purpose of the production function is to address allocative efficiency in the use of factor inputs in production and the resulting distribution of income to those factors, while abstracting away from the technological problems of achieving technical efficiency, as an engineer or professional manager might understand it.

<span class="mw-page-title-main">Marginal product</span> Change in output resulting from employing one more unit of a particular input

In economics and in particular neoclassical economics, the marginal product or marginal physical productivity of an input is the change in output resulting from employing one more unit of a particular input, assuming that the quantities of other inputs are kept constant.

<span class="mw-page-title-main">Diminishing returns</span> Economic theory

In economics, diminishing returns are the decrease in marginal (incremental) output of a production process as the amount of a single factor of production is incrementally increased, holding all other factors of production equal. The law of diminishing returns states that in productive processes, increasing a factor of production by one unit, while holding all other production factors constant, will at some point return a lower unit of output per incremental unit of input. The law of diminishing returns does not cause a decrease in overall production capabilities, rather it defines a point on a production curve whereby producing an additional unit of output will result in a loss and is known as negative returns. Under diminishing returns, output remains positive, but productivity and efficiency decrease.

<span class="mw-page-title-main">Isoquant</span> Contour line in microeconomics

An isoquant, in microeconomics, is a contour line drawn through the set of points at which the same quantity of output is produced while changing the quantities of two or more inputs. The x and y axis on an isoquant represent two relevant inputs, which are usually a factor of production such as labour, capital, land, or organisation. An isoquant may also be known as an “Iso-Product Curve”, or an “Equal Product Curve”.

In economics, the concept of returns to scale arises in the context of a firm's production function. It explains the long-run linkage of increase in output (production) relative to associated increases in the inputs.

In economics, a cost curve is a graph of the costs of production as a function of total quantity produced. In a free market economy, productively efficient firms optimize their production process by minimizing cost consistent with each possible level of production, and the result is a cost curve. Profit-maximizing firms use cost curves to decide output quantities. There are various types of cost curves, all related to each other, including total and average cost curves; marginal cost curves, which are equal to the differential of the total cost curves; and variable cost curves. Some are applicable to the short run, others to the long run.

<span class="mw-page-title-main">Total cost</span> Total economic cost of production

In economics, total cost (TC) is the minimum financial cost of producing some quantity of output. This is the total economic cost of production and is made up of variable cost, which varies according to the quantity of a good produced and includes inputs such as labor and raw materials, plus fixed cost, which is independent of the quantity of a good produced and includes inputs that cannot be varied in the short term such as buildings and machinery, including possibly sunk costs.

In economics, the long-run is a theoretical concept in which all markets are in equilibrium, and all prices and quantities have fully adjusted and are in equilibrium. The long-run contrasts with the short-run, in which there are some constraints and markets are not fully in equilibrium. More specifically, in microeconomics there are no fixed factors of production in the long-run, and there is enough time for adjustment so that there are no constraints preventing changing the output level by changing the capital stock or by entering or leaving an industry. This contrasts with the short-run, where some factors are variable and others are fixed, constraining entry or exit from an industry. In macroeconomics, the long-run is the period when the general price level, contractual wage rates, and expectations adjust fully to the state of the economy, in contrast to the short-run when these variables may not fully adjust.

<span class="mw-page-title-main">Supply (economics)</span> Amount of a good that sellers are willing to provide in the market

In economics, supply is the amount of a resource that firms, producers, labourers, providers of financial assets, or other economic agents are willing and able to provide to the marketplace or to an individual. Supply can be in produced goods, labour time, raw materials, or any other scarce or valuable object. Supply is often plotted graphically as a supply curve, with the price per unit on the vertical axis and quantity supplied as a function of price on the horizontal axis. This reversal of the usual position of the dependent variable and the independent variable is an unfortunate but standard convention.

<span class="mw-page-title-main">Minimum efficient scale</span>

In industrial organization, the minimum efficient scale (MES) or efficient scale of production is the lowest point where the plant can produce such that its long run average costs are minimized. It is also the point at which the firm can achieve necessary economies of scale for it to compete effectively within the market.

A firm will choose to implement a shutdown of production when the revenue received from the sale of the goods or services produced cannot even cover the variable costs of production. In that situation, the firm will experience a higher loss when it produces, compared to not producing at all.

In economics, the marginal product of labor (MPL) is the change in output that results from employing an added unit of labor. It is a feature of the production function and depends on the amounts of physical capital and labor already in use.

<span class="mw-page-title-main">Socially optimal firm size</span>

The socially optimal firm size is the size for a company in a given industry at a given time which results in the lowest production costs per unit of output.

References

  1. Gelles, Gregory M., and Mitchell, Douglas W., "Returns to scale and economies of scale: Further observations," Journal of Economic Education 27, Summer 1996, 259-261.
  2. Frisch, R., Theory of Production, Dordrecht: D. Reidel, 1965.
  3. Ferguson, C. E., The Neoclassical Theory of Production and Distribution, London: Cambridge University Press, 1969.