Bharattherium

Last updated

Bharattherium
Temporal range: 70–66  Ma
Scientific classification Red Pencil Icon.png
Kingdom: Animalia
Phylum: Chordata
Class: Mammalia
Family: Sudamericidae
Genus: Bharattherium
Prasad et al., 2007
Species:
B. bonapartei
Binomial name
Bharattherium bonapartei
Prasad et al., 2007
Synonyms [2]
  • Dakshina jederiWilson et al., 2007

Bharattherium is a mammal that lived in India during the Maastrichtian (latest Cretaceous) and possibly the Paleocene. The genus has a single species, Bharattherium bonapartei. It is part of the gondwanathere family Sudamericidae, which is also found in Madagascar and South America during the latest Cretaceous. The first fossil of Bharattherium was discovered in 1989 and published in 1997, but the animal was not named until 2007, when two teams independently named the animal Bharattherium bonapartei and Dakshina jederi. The latter name is now a synonym. Bharattherium is known from a total of eight isolated fossil teeth, including one incisor and seven molariforms (molar-like teeth, either premolars or true molars).

Contents

Bharattherium molariforms are high, curved teeth, with a height of 6 to 8.5 millimetres (0.24 to 0.33 in). In a number of teeth tentatively identified as fourth lower molariforms (mf4), there is a large furrow on one side and a deep cavity (infundibulum) in the middle of the tooth. Another tooth, perhaps a third lower molariform, has two furrows on one side and three infundibula on the other. The tooth enamel has traits that have been interpreted as protecting against cracks in the teeth. The hypsodont (high-crowned) teeth of sudamericids like Bharattherium are reminiscent of later grazing mammals, and the discovery of grass in Indian fossil sites contemporaneous with those yielding Bharattherium suggest that sudamericids were indeed grazers.

Taxonomy

A gondwanathere tooth, catalogued as VPL/JU/NKIM/25, [Note 1] was first discovered in the Maastrichtian (latest Cretaceous, about 70–66 million years ago) Intertrappean Beds of Naskal, India, in 1989, but it was not identified as such until another gondwanathere, Lavanify , was found on Madagascar in the middle 1990s. The discoveries of Lavanify and VPL/JU/NKIM/25 were announced in Nature in 1997. Gondwanatheres were previously known only from Argentina; these discoveries extended the range of the gondwanathere family Sudamericidae across the continents of the ancient supercontinent of Gondwana. [4]

In 2007, two teams of scientists independently named the Indian gondwanathere on the basis of new material; both teams included VPL/JU/NKIM/25 in their newly named species. Guntupalli Prasad and colleagues named the animal Bharattherium bonapartei on the basis of an additional tooth, VPL/JU/IM/33, [Note 2] from another Intertrappean locality, Kisalpuri. The generic name, Bharattherium, combines Bharat, Sanskrit for "India", with the Ancient Greek therion, meaning "beast", and the specific name, bonapartei, honors Argentine paleontologist José Bonaparte, who was the first to describe a gondwanathere fossil. [5] G.P. Wilson and colleagues named Dakshina jederi on the basis of six teeth (in addition to VPL/JU/NKIM 25), and identified some additional material as indeterminate gondwanatheres. [6] Of these teeth, three (GSI/SR/PAL-G059, [Note 3] G070, and G074) are from a third Intertrappean site at Gokak and three (GSI/SR/PAL-N071, N210, and N212) are from Naskal. [7] Dakshina, the generic name, derives from Sanskrit daakshinaatya "of the south", and refers both to the animal's occurrence in southern India and to the distribution of gondwanatheres in the southern continents. The specific name, jederi, honors University of Michigan paleontologist Jeffrey A. Wilson, nicknamed "Jeder", who played an important role in the project that led to the discovery of Dakshina. [7] Wilson and colleagues also described three other gondwanathere teeth from Gokak (GSI/SR/PAL-G111, G112, and G211), which they tentatively identified as a different species of gondwanathere on their small size. [8] In 2008, Prasad commented that Bharattherium bonapartei and Dakshina jederi represented the same species and that Bharattherium, which was published first, was the correct name. [2]

Description

Known remains of Bharattherium
FossilLocalityTooth positionReferences
GSI/SR/PAL-G059GokakLeft mf3 [9]
GSI/SR/PAL-G070GokakRight mf4 [10]
GSI/SR/PAL-G074GokakRight mf4 [11]
VPL/JU/IM/33KisalpuriMolariform [12]
GSI/SR/PAL-N071NaskalLeft mf4 [13]
GSI/SR/PAL-N210NaskalLeft i1 [9]
GSI/SR/PAL-N212NaskalRight mf4 [9]
VPL/JU/NKIM/25NaskalLeft mf4 [14]

Bharattherium bonapartei is known from a total of eight isolated teeth. [15] Among the seven teeth in their sample, Wilson and colleagues tentatively identified five as fourth lower molariforms (mf4)—because gondwanathere premolars and molars cannot be distinguished, they are collectively known as "molariforms"—one as a third lower molariform (mf3) and one as a lower incisor (i1). These determinations were made on the basis of comparisons with a sample of the South American gondwanathere Sudamerica ameghinoi , in which all eight molariform positions are known. [7] However, the large number of mf4s led Wilson and colleagues to suspect that the criteria used for distinguishing Sudamerica tooth positions may not apply directly to Bharattherium. [16] Prasad and colleagues did not assign their two Bharattherium teeth to any tooth position, but suggested that they may represent different tooth positions and that one may come from the upper and the other from the lower side of the jaw. [17] As is characteristic of sudamericids, Bharattherium molariforms are hypsodont (high-crowned) and have a flat occlusal (chewing) surface atop a high tooth, with furrows that extend down the height of the tooth. [18] Bharattherium molariforms are the smallest of any sudamericid; those of Lavanify, for example, are about 35% larger. [19] Unlike Sudamerica molariforms, those of Bharattherium taper towards the top. [20]

Molariforms

GSI/SR/PAL-G074, a well-preserved right mf4 that Wilson and colleagues selected as the holotype of Dakshina jederi, is 7.57 mm high and has a crown of 3.66 × 2.99 mm. It is curved, with the base more distal (towards the back) than the top. The occlusal surface is rectangular. On the lingual side (towards the tongue), there is a deep furrow (filled in part with cementum) that extends from the top to near the base of the tooth. There is also a much smaller indentation on the buccal side (towards the cheeks). The occlusal surface is mostly covered with enamel surrounding a dentine lake, but there is a V-shaped islet in the middle, with the tip of the V towards the lingual side, that forms the remnant of an infundibulum—a deep cavity in the tooth. Perikymata—wave-like bands and grooves—are visible in the enamel. [20]

The right mf4 GSI/SR/PAL-G070, which is damaged on the buccal, distal, and lingual sides, is 8.40 mm high, but has an occlusal surface of only 2.49 × 1.75 mm. Unlike in GSI/SR/PAL-G074, the dentine on the occlusal surface is not exposed, and the occlusal surface is oval in shape. Furthermore, the V-shaped islet is larger and the lingual furrow is less prominent at the occlusal surface, because it tapers near the tip of the tooth. In the heavily damaged left mf4 GSI/SR/PAL-N071 (height 7.16 mm), only the distal side is well preserved. The infundibulum is exposed internally; it extends 4.01 mm down the crown. [21] The occlusal surface is poorly preserved, but its dimensions are at least 2.14 × 2.42 mm. GSI/SR/PAL-N212, a right mf4, is damaged on the mesial side and has a height of 5.86 mm and an occlusal surface of at least 2.66 x 2.04 mm. Cementum fills the V-shaped islet. [22]

VPL/JU/NKIM/25 was the first Indian gondwanathere fossil to be described; it is damaged on one side. Wilson and colleagues identified it as a left mf4 (implying that the damaged side is buccal) with strong similarities to GSI/SR/PAL-G070, including a curved crown and a V-shaped enamel islet atop a deep infundibulum. The occlusal surface is oval. The tooth is 6 mm high and Wilson and colleagues estimate that the occlusal surface is 2.5 × 1.8 mm, close to the dimensions of GSI/SR/PAL-G070. They suggest the tooth probably had enamel on all sides of the crown, [22] but Prasad and colleagues point to a possible enamel-dentine junction on the damaged side as evidence that enamel may be absent there. [18]

GSI/SR/PAL-G059, identified as a left mf3, has a height of 5.97 mm at the mesial side, but only 2.02 mm at the distal side because of curvature. On the lingual side, two long furrows are visible, and on the buccal side breakage exposes three long infundibula, of which the most mesial one is the longest and the most distal one the shortest. In the occlusal surface, these three infundibula merge into a single islet. In addition, three dentine lakes are visible in the occlusal surface, which has dimensions of 4.58 × at least 2.52 mm. Although in Sudamerica, mf2, mf3, and the upper molariforms MF3 and MF4 all have three lophs, like GSI/SR/PAL-G059, its curvature matches the mf3 of Sudamerica best. [22]

VPL/JU/IM/33, the holotype of Bharattherium bonapartei, is 7.33 mm high, [5] 2.66 mm long, and 2.0 mm wide. The occlusal surface is about rectangular and is mostly covered by a V-shaped dentine lake, which encloses a small heart-shaped enamel islet at the top of an cementum-filled infundibulum. A vertical furrow is also present. Near the top of the tooth, enamel covers the entire crown, but further down there is no enamel on the concave face of the tooth. [18]

Incisor

The left i1 GSI/SR/PAL-N210 is flat on the medial side (towards the middle of the head) but convex on the lateral side (towards the side of the head) and bears a shallow groove on the lateral side. At the base, the tooth is broadest on the lower end. The tooth is slightly curved upward towards the tip. Measured on the lower side, the tooth is 11.76 mm long, but breakage means the true length is probably larger. The depth of the tooth is about 3.39 mm. Wilson and colleagues identified this incisor as Dakshina on the basis of its size; [22] the upper and lower incisor that they assigned to an indeterminate gondwanathere are smaller. [23]

Enamel microstructure

The microstructure of the enamel of VPL/JU/NKIM/25 has been studied. Unlike other gondwanatheres, it has enamel consisting of three layers—radial enamel, tangential enamel, and PLEX. [24] The rows of small, round enamel prisms are separated by interprismatic matrix [3] that forms crystals oriented at right angles relative to the prisms. Prisms arise at the enamel-dentine junction, run through the enamel, and meet the outer enamel at a high angle. These features of the enamel are apparently adaptations that protect the tooth from cracks. [25]

Relationships

Ferugliotheriidae

Sudamericidae

Gondwanatherium

Sudamerica

Lavanify

Bharattherium

Relationships among gondwanatheres [26]

Bharattherium is identifiable as a sudamericid because it has hypsodont molariforms with cementum-filled furrows. [27] Among the four known sudamericid genera—Gondwanatherium and Sudamerica from Argentina; Lavanify from Madagascar; and Bharattherium—it shares with Sudamerica and Lavanify the presence of furrows that extend down to the base of the tooth. [28] In addition, it shares several features with Lavanify, suggesting the two are closely related. [29] Wilson and colleagues list three features shared by the two: the presence of an infundibulum (seen in only one of two specimens of Lavanify), interprismatic matrix, and perikymata. [24] Prasad and colleagues also interpreted the interprismatic matrix as a shared character, but added the absence of enamel on one side of the tooth crown. [30] Wilson and colleagues identified the presence of a V-shaped enamel lake on mf4 and of three layers in the enamel as autapomorphies (uniquely derived characters) of the Indian sudamericid. [24]

Range and ecology

Remains of Bharattherium have been found at three widely separated Late Cretaceous sites in peninsular India—Naskal, Andhra Pradesh; Gokak, Karnataka; and Kisalpuri, Madhya Pradesh. [31] All sites are in the Intertrappean Beds (part of the Deccan Traps) and are Maastrichtian (latest Cretaceous) in age. [32] The Intertrappean Beds have yielded a variety of fossil animals, including eutherian mammals such as Deccanolestes , Sahnitherium , and Kharmerungulatum . In the perhaps slightly older Infratrappean Beds, a possible member of the ancient and enigmatic mammalian group Haramiyida has been found, Avashishta . [33] Members of the family Sudamericidae, in which Bharattherium is classified, are also known from the Cretaceous of Argentina, Madagascar, and possibly Tanzania and from the Paleogene of Argentina and Antarctica, and the second gondwanathere family, Ferugliotheriidae, is known with certainty only from the Cretaceous of Argentina. Thus, Bharattherium is an example of a Gondwanan faunal element in India and indicates biogeographic affinities with other Gondwanan landmasses such as Madagascar and South America. [34]

In modern mammals, hypsodont teeth are often associated with diets that include abrasive vegetation such as grasses. Hypsodonty in sudamericids has been interpreted as indicating semiaquatic, terrestrial habits and a diet with items like roots or bark, because it was thought that grasses had not yet appeared when sudamericids lived. However, grass remains have been found at Intertrappean sites contemporary with those where Bharattherium was found, suggesting that sudamericids like Bharattherium were indeed the first grazing mammals. [35]

It is among the two Indian mammal taxa that are inferred to have survived the KT event in India, alongside Deccanolestes . [1]

Notes

  1. This tooth is stored in the collection of mammals from the Naskal fossil site in the Vertebrate Palaeontology Laboratory at the University of Jammu, numbered 25. [3]
  2. This tooth is stored in the collection of mammals from the Intertrappean Beds in the collections of Jammu University's Vertebrate Palaeontology Laboratory, numbered 33. [5]
  3. Like the others described by Wilson and colleagues, this tooth is stored in the collections of the Palaeontology Division of the Southern Region of the Geological Survey of India. [7]

Related Research Articles

<span class="mw-page-title-main">Multituberculata</span> Extinct order of mammals

Multituberculata is an extinct order of rodent-like mammals with a fossil record spanning over 130 million years. They first appeared in the Middle Jurassic, and reached a peak diversity during the Late Cretaceous and Paleocene. They eventually declined from the mid Paleocene onwards, disappearing from the known fossil record in the late Eocene. They are the most diverse order of Mesozoic mammals with more than 200 species known, ranging from mouse-sized to beaver-sized. These species occupied a diversity of ecological niches, ranging from burrow-dwelling to squirrel-like arborealism to jerboa-like hoppers. Multituberculates are usually placed as crown mammals outside either of the two main groups of living mammals—Theria, including placentals and marsupials, and Monotremata—but usually as closer to Theria than to monotremes. They are considered to be closely related to Euharamiyida and Gondwanatheria as part of Allotheria.

Hahnodon is an extinct genus of mammaliaforms from the Early Cretaceous Ksar Metlili Formation in Morocco. Although originally considered to be a relatively early member of the extinct clade Multituberculata, recent studies indicate that it instead is a haramiyid.

<span class="mw-page-title-main">Gondwanatheria</span> Extinct group of Mammaliaformes that lived during the Upper Cretaceous through the Miocene

Gondwanatheria is an extinct group of mammaliaforms that lived in parts of Gondwana, including Madagascar, India, South America, Africa and Antarctica during the Upper Cretaceous through the Paleogene. Until recently, they were known only from isolated teeth, a few lower jaws, two partial skulls and one complete cranium. They are generally considered to be closely related to the multituberculates and likely the euharamiyidians, well known from the Northern Hemisphere, with which they form the clade Allotheria.

Ferugliotherium is a genus of fossil mammals in the family Ferugliotheriidae from the Campanian and/or Maastrichtian period of Argentina. It contains a single species, Ferugliotherium windhauseni, which was first described in 1986. Although originally interpreted on the basis of a single brachydont (low-crowned) molar as a member of Multituberculata, an extinct group of small, rodent-like mammals, it was recognized as related to the hypsodont (high-crowned) Sudamericidae following the discovery of additional material in the early 1990s. After a jaw of the sudamericid Sudamerica was described in 1999, these animals were no longer considered to be multituberculates and a few fossils that were previously considered to be Ferugliotherium were assigned to unspecified multituberculates instead. Since 2005, a relationship between gondwanatheres and multituberculates has again received support. A closely related animal, Trapalcotherium, was described in 2009 on the basis of a single tooth.

Lavanify is a mammalian genus from the late Cretaceous of Madagascar. The only species, L. miolaka, is known from two isolated teeth, one of which is damaged. The teeth were collected in 1995–1996 and described in 1997. The animal is classified as a member of Gondwanatheria, an enigmatic extinct group with unclear phylogenetic relationships, and within Gondwanatheria as a member of the family Sudamericidae. Lavanify is most closely related to the Indian Bharattherium; the South American Sudamerica and Gondwanatherium are more distantly related. Gondwanatheres probably ate hard plant material.

Ferugliotheriidae is one of three known families in the order Gondwanatheria, an enigmatic group of extinct mammals. Gondwanatheres have been classified as a group of uncertain affinities or as members of Multituberculata, a major extinct mammalian order. The best-known representative of Ferugliotheriidae is the genus Ferugliotherium from the Late Cretaceous epoch in Argentina. A second genus, Trapalcotherium, is known from a single tooth, a first lower molariform, from a different Late Cretaceous Argentinean locality. Another genus known from a single tooth, Argentodites, was first described as an unrelated multituberculate, but later identified as possibly related to Ferugliotherium. Finally, a single tooth from the Paleogene of Peru, LACM 149371, perhaps a last upper molariform, and a recent specimen from Mexico, may represent related animals.

Hahnodontidae is a family of extinct mammaliaforms from Early Cretaceous deposits in Morocco and the Western United States. Although originally considered to belong to the extinct clade Multituberculata, recent work indicates that hahnodontids belong to the more primitive clade Haramiyida.

<i>Siamosaurus</i> Potentially dubious genus of spinosaurid theropod dinosaur

Siamosaurus is a genus of spinosaurid dinosaur that lived in what is now known as China and Thailand during the Early Cretaceous period and is the first reported spinosaurid from Asia. It is confidently known only from tooth fossils; the first were found in the Sao Khua Formation, with more teeth later recovered from the younger Khok Kruat Formation. The only species Siamosaurus suteethorni, whose name honours Thai palaeontologist Varavudh Suteethorn, was formally described in 1986. In 2009, four teeth from China previously attributed to a pliosaur—under the species "Sinopliosaurus" fusuiensis—were identified as those of a spinosaurid, possibly Siamosaurus. It is yet to be determined if two partial spinosaurid skeletons from Thailand and an isolated tooth from Japan also belong to Siamosaurus.

<span class="mw-page-title-main">Haramiyida</span> Extinct order of mammaliaforms

Haramiyida is a possibly polyphyletic order of mammaliaform cynodonts or mammals of controversial taxonomic affinites. Their teeth, which are by far the most common remains, resemble those of the multituberculates. However, based on Haramiyavia, the jaw is less derived; and at the level of evolution of earlier basal mammals like Morganucodon and Kuehneotherium, with a groove for ear ossicles on the dentary. If they are early multituberculates, they would be the longest lived mammalian clade of all time. However, a more recent study in November 2015 may dispute this and suggested the Haramiyida were not crown mammals, but were part of an earlier offshoot of mammaliaformes instead. It is also disputed whether the Late Triassic species are closely related to the Jurassic and Cretaceous members belonging to Euharamiyida/Eleutherodontida, as some phylogenetic studies recover the two groups as unrelated, recovering the Triassic haramiyidians as non-mammalian cynodonts, while recovering the Euharamiyida as crown-group mammals closely related to multituberculates.

<i>Adamantinasuchus</i> Extinct genus of reptiles

Adamantinasuchus is an extinct genus of notosuchian crocodylomorph from and named after the Late Cretaceous Adamantina Formation of Brazil. It is known from only one fossil, holotype UFRJ-DG 107-R, collected by William Nava. The fossil consists of a partial skull, fragmentary limb bones and a few broken vertebrae, and was found 25 km SW of the town of Marilia, near a reservoir dam. Adamantinasuchus was approximately 60 cm long from nose to tail, and would have only weighed a few kilograms.

UA 8699 is a fossil mammalian tooth from the Cretaceous of Madagascar. A broken lower molar about 3.5 mm (0.14 in) long, it is from the Maastrichtian of the Maevarano Formation in northwestern Madagascar. Details of its crown morphology indicate that it is a boreosphenidan, a member of the group that includes living marsupials and placental mammals. David W. Krause, who first described the tooth in 2001, interpreted it as a marsupial on the basis of five shared characters, but in 2003 Averianov and others noted that all those are shared by zhelestid placentals and favored a close relationship between UA 8699 and the Spanish zhelestid Lainodon. Krause used the tooth as evidence that marsupials were present on the southern continents (Gondwana) as early as the late Cretaceous and Averianov and colleagues proposed that the tooth represented another example of faunal exchange between Africa and Europe at the time.

Several mammals are known from the Mesozoic of Madagascar. The Bathonian Ambondro, known from a piece of jaw with three teeth, is the earliest known mammal with molars showing the modern, tribosphenic pattern that is characteristic of marsupial and placental mammals. Interpretations of its affinities have differed; one proposal places it in a group known as Australosphenida with other Mesozoic tribosphenic mammals from the southern continents (Gondwana) as well as the monotremes, while others favor closer affinities with northern (Laurasian) tribosphenic mammals or specifically with placentals. At least five species are known from the Maastrichtian, including a yet undescribed species known from a nearly complete skeleton that may represent a completely new group of mammals. The gondwanathere Lavanify, known from two teeth, is most closely related to other gondwanatheres found in India and Argentina. Two other teeth may represent another gondwanathere or a different kind of mammal. One molar fragment is one of the few known remains of a multituberculate mammal from Gondwana and another has been interpreted as either a marsupial or a placental.

Sudamericidae is a family of gondwanathere mammals that lived during the late Cretaceous to Miocene. Its members include Lavanify and Vintana from the Cretaceous of Madagascar, Bharattherium (=Dakshina) from the Cretaceous of India, Gondwanatherium from the Cretaceous of Argentina, Sudamerica from the Paleocene of Argentina, and unnamed forms from the Eocene of Antarctica and Cretaceous of Tanzania. More recently, Patagonia, a mammal from the Colhuehuapian stage of the Miocene of southern South America, has been suggested to be a sudamericid.

<i>Galulatherium</i> Fossil taxon

Galulatherium is an extinct genus of possibly gondwanathere mammal, from the Late Cretaceous (Turonian-Campanian)-aged Galula Formation of Tanzania. It is known solely from the type specimen TNM 02067 a fragmentary fossil dentary. The short, deep bone is about 19.5 mm (0.77 in) long, but the back part is broken off. It contains a large, forward-inclined incisor with a root that extends deep into the jaw, separated by a diastema (gap) from five cheekteeth. Very little remains of the teeth, but enough to determine that they are hypsodont (high-crowned). The third cheektooth is the largest and the roots of the teeth are curved. First described in 2003, TNM 02067 has been tentatively identified as a sudamericid—an extinct family of high-crowned gondwanathere mammals otherwise known from South America, Madagascar, India, and Antarctica. If truly a gondwanathere, it would be the only African member of the group and may be the oldest. The describers could not exclude other possibilities, such as that the jaw represents some mammalian group known only from younger, Cenozoic times. In 2019 the fossil was CT scanned, which revealed additional details of the specimen.

Argentodites is a possible multituberculate mammal from the Cretaceous of Argentina. The single species, Argentodites coloniensis, is known from a single blade-like fourth lower premolar (p4) from the La Colonia Formation, which is mostly or entirely Maastrichtian in age. The p4 is 4.15 mm long and bears eight cusps on its upper margin and long associated ridges on both sides. The enamel consists of prisms that are completely or partly surrounded by a sheath and that are on average 6.57 μm apart. Zofia Kielan-Jaworowska, who described and named the fossil in 2007, regarded it as a multituberculate, perhaps a cimolodontan—and thus, a member of a mostly Laurasian (northern) group and an immigrant to Argentina from North America—on the basis of the shape of the tooth and features of its enamel. In 2009, however, two teams argued that Argentodites may in fact be close to or identical with Ferugliotherium, a member of the small Gondwanan (southern) group Gondwanatheria; although their relationships are disputed, gondwanatheres may themselves be multituberculates.

LACM 149371 is an enigmatic fossil mammalian tooth from the Paleogene of Peru. It is from the Santa Rosa fossil site, which is of uncertain age but possibly late Eocene or Oligocene. The tooth is poorly preserved and may have been degraded by acidic water or because it passed through a predator's digestive tract. Its largest dimension is 2.65 mm. It is triangular in shape and bears six cusps that surround the middle of the tooth, where there are three basins (fossae). Crests connects the cusps and separate the fossae. The microscopic structure of the enamel is poorly preserved.

Trapalcotherium is a fossil mammal from the Cretaceous of Argentina in the family Ferugliotheriidae. The single species, T. matuastensis, is known from one tooth, a first lower molar. It is from the Allen Formation, which is probably Maastrichtian in age, and was first described in 2009. The tooth bears two rows of cusps, one at the inner (lingual) side and the other at the outer (labial) side, which are connected by transverse ridges separated by deep valleys. This pattern is reminiscent of Ferugliotherium, a gondwanathere mammal from similarly aged deposits in Argentina, and Trapalcotherium is therefore recognized as a member of the same family Ferugliotheriidae. Ferugliotheriidae is one of two families of gondwanatheres, an enigmatic group without close relationships to any living mammals.

Deccanolestes is a scansorial, basal Euarchontan from the Late Cretaceous (Maastrichtian) and Paleocene Intertrappean Beds of Andhra Pradesh, India. It may be closely related to Sahnitherium. Deccanolestes has been referred to Palaeoryctidae in the past, but recent evidence has shown that it is either the most basal Euarchontan, as the earliest known Adapisoriculid, or as a stem-afrotherian.

<span class="mw-page-title-main">Insular India</span> Isolated land mass which became the Indian subcontinent

Insular India was an isolated landmass which became the Indian subcontinent. Across the latter stages of the Cretaceous and most of the Paleocene, following the breakup of Gondwana, the Indian subcontinent remained an isolated landmass as the Indian Plate drifted across the Tethys Ocean, forming the Indian Ocean. The process of India's separation from Madagascar first began 88 million years ago, but complete isolation only occurred towards the end of the Maastrichtian, a process that has been suggested to be the creation of the Deccan Traps. Soon after, the land mass moved northward rather quickly, until contact with Asia was established 55 million years ago. Even then, both landmasses did not become fully united until around 35 million years ago, and periods of isolation occurred as recently as 24 million years ago.

Pachagnathus is an extinct genus of non-pterodactyloid pterosaur from the late Norian–early Rhaetian-aged Quebrada del Barro Formation of Argentina. It lived in the Late Triassic period, and is one of the only known definitive Triassic pterosaurs from the southern hemisphere. It is also one of the few known continental Triassic pterosaurs, indicating that the absence of early pterosaurs in both the southern hemisphere and terrestrial environments is likely a sampling bias, and not a true absence.

References

  1. 1 2 Wilson, G. P.; Widdowson, M.; Anantharaman, S.; Das Sarma, D. C.; Wilson, J. A.; Renne, P. R. (October 27, 2016). "New mammalian fossils from the intertrappean beds of the southern part of the Deccan Volcanic Province and the Cretaceous-Paleogene transition in India". SVP 2016 Program Book. Vol. 6. Society of Vertebrate Paleontology. p. 252.
  2. 1 2 Prasad 2008, p. 91.
  3. 1 2 Krause et al. 1997, p. 505.
  4. Krause et al. 1997, p. 504.
  5. 1 2 3 Prasad et al. 2007, p. 19.
  6. Wilson, Das Sarma & Anantharaman 2007, p. 521.
  7. 1 2 3 4 Wilson, Das Sarma & Anantharaman 2007, p. 522.
  8. Wilson, Das Sarma & Anantharaman 2007, pp. 526–527.
  9. 1 2 3 Wilson, Das Sarma & Anantharaman 2007, pp. 522, 525.
  10. Wilson, Das Sarma & Anantharaman 2007, pp. 522, 524.
  11. Wilson, Das Sarma & Anantharaman 2007, pp. 522–524.
  12. Prasad et al. 2007, pp. 19–20.
  13. Wilson, Das Sarma & Anantharaman 2007, pp. 522, 524–525.
  14. Krause et al. 1997, pp. 505–506; von Koenigswald, Goin & Pascual 1999, pp. 290–293; Prasad et al. 2007, pp. 19–20; Wilson, Das Sarma & Anantharaman 2007, pp. 522, 525.
  15. Prasad et al. 2007, p. 17; Wilson, Das Sarma & Anantharaman 2007, p. 522.
  16. Wilson, Das Sarma & Anantharaman 2007, pp. 525–526.
  17. Prasad et al. 2007, p. 22.
  18. 1 2 3 Prasad et al. 2007, p. 20.
  19. Wilson, Das Sarma & Anantharaman 2007, p. 526; Prasad et al. 2007, pp. 19, 21.
  20. 1 2 Wilson, Das Sarma & Anantharaman 2007, p. 523.
  21. Wilson, Das Sarma & Anantharaman 2007, p. 524.
  22. 1 2 3 4 Wilson, Das Sarma & Anantharaman 2007, p. 525.
  23. Wilson, Das Sarma & Anantharaman 2007, p. 527.
  24. 1 2 3 Wilson, Das Sarma & Anantharaman 2007, p. 526.
  25. Prasad et al. 2007, p. 24.
  26. Krause et al. 1997, fig. 3; Wilson, Das Sarma & Anantharaman 2007, p. 526; Prasad et al. 2007, p. 23.
  27. Wilson, Das Sarma & Anantharaman 2007, p. 526; Prasad et al. 2007, p. 20.
  28. Wilson, Das Sarma & Anantharaman 2007, p. 526; Prasad et al. 2007, p. 21.
  29. Wilson, Das Sarma & Anantharaman 2007, p. 526; Prasad et al. 2007, p. 23.
  30. Prasad et al. 2007, p. 21.
  31. Wilson, Das Sarma & Anantharaman 2007, pp. 521–522; Prasad et al. 2007, p. 19.
  32. Wilson, Das Sarma & Anantharaman 2007, p. 522; Prasad et al. 2007, p. 19.
  33. Prasad & Sahni 2009, pp. 370, 373.
  34. Wilson, Das Sarma & Anantharaman 2007, pp. 521, 528.
  35. Prasad et al. 2007, pp. 23–24; Prasad et al. 2005, pp. 1179–1180; Wilson, Das Sarma & Anantharaman 2007, p. 521.

Literature cited