This article needs additional citations for verification .(June 2021) |
Bicycle performance is measurable performance such as energy efficiency that affect how effective a bicycle is. Bicycles are extraordinarily efficient machines; in terms of the amount of energy a person must expend to travel a given distance, cycling is calculated to be the most efficient self-powered means of transportation. [1]
The transport performance of bicycles is also exceptional in terms of ton kilometers. [2] In terms of the ratio of cargo weight (payload) a bicycle can carry to the total bike weight, cycling (here under cargo biking) is also the most efficient means of cargo transportation.
From a mechanical viewpoint, up to 99% of the mechanical energy delivered by the rider into the pedals is transmitted to the wheels (clean, lubricated new chain at 400 W), although the use of gearing mechanisms reduces this by 1–7% (clean, well-lubricated derailleurs and a straight chainline), 4–12% (chain with 3-speed hubs), or 10–20% (shaft drive with 3-speed hubs). The higher efficiencies in each range are achieved at higher power levels and in direct drive (hub gears) or with large driven cogs (derailleurs). [3] [4]
This section needs additional citations for verification .(June 2021) |
A human traveling on a bicycle at 16–24 km/h (10–15 mph), using only the power required to walk, is the most energy-efficient means of human transport generally available. [5] Air drag, which increases with the square of speed, requires increasingly higher power outputs relative to speed. A bicycle in which the rider lies in a supine position is referred to as a recumbent bicycle or, if covered in an aerodynamic fairing to achieve very low air drag, as a velomobile.
According to a study a human at 70 kg (150 lb) requires about 60 watts to walk at 5 km/h (3.1 mph) on firm and flat ground, [6] while according to a calculator at kreuzotter.de the same person and power output on an ordinary bicycle will travel at 15 km/h (9.3 mph), [7] so in these conditions the energy expenditure of cycling is about one-third that of walking the same distance. Uphill and downhill speeds vary according to the slope of the incline and the effort of the rider. Uphill cycling requires more power to overcome gravity and speeds are therefore lower and/or the heartrate is higher than during flat riding conditions. With medium effort a cyclist can pedal 8–10 km/h up a gentle incline. Riding on grass, sand, mud, or snow will also slow a rider down. Without pedaling downhill a bicycle rider can easily reach speeds of 20–40 km/h down a gentle 5% slope and speeds exceeding 50 km/h on steeper inclines.
How much power humans can generate and for how long varies with physical form. The specific power may be expressed in watts per kilogram of body mass. Active cyclists can produce from 1.0 W/kg (novice female) 2.2 W/kg (average untrained male), 3.0 W/kg (male, fair or female, good [fitness]), and 6.6 W/kg (top-class male athletes) at their functional threshold power (about one hour). 5 W/kg is about the level reachable by excellent male or exceptional female amateurs. [8] Maximum sustained power levels during one hour are recorded from about 200 W (NASA experimental group of "healthy men") to 500 W (Eddy Merckx on ergometer 1975). For a day's pedalling these figures can roughly be halved, for a minute's duration doubled. [9]
The energy input to the human body is in the form of food energy, usually quantified in kilocalories [kcal] or kilojoules [kJ, which is equivalent to kWs or kilowatt-seconds]. This can be related to a certain distance travelled and to body weight, giving units such as kJ/km⋅kg. The rate of food consumption, i.e. the amount consumed during a certain period of time, is the input power. This can be measured in kcal/day or in J/s = W (1000 kcal/d ≈ 48.5 W).
This input power can be determined by measuring oxygen uptake, or in the long term food consumption, assuming no change of weight. This includes the power needed just for living, called the basal metabolic rate BMR or roughly the resting metabolic rate.
The required food can also be calculated by dividing the output power by the muscle efficiency. This is 18–26%. From the example above, if a 70 kg person is cycling at 15 km/h by expending 60 W and a muscular efficiency of 20% is assumed, roughly 1 kJ/km⋅kgextra food is required. For calculating the total food required during the trip, the BMR must first be added to the input power. If the 70 kg person is an old, short woman, her BMR could be 60 W, in all other cases a bit higher. [10] Viewed this way the efficiency in this example is effectively halved and roughly 2 kJ/km⋅kgtotal food is required.
Although this shows a large relative increase in food required for low power cycling, in practice it is hardly noticed, as the extra energy cost of an hour's cycling can be covered with 50 g nuts or chocolate. With long and fast or uphill cycling, the extra food requirement however becomes evident.
To complete the efficiency calculation, the type of food consumed determines the overall efficiency. For this the energy needed to produce, distribute and cook the food must be considered.
In utility cycling there is large variations in speeds reached. An elderly person on an upright roadster might do less than 10 km/h (6.2 mph) while a fitter or younger person could easily do twice that on the same bicycle. For cyclists in Copenhagen, the average cycling speed is 15.5 km/h (9.6 mph). [11] The fitness and cadence of the rider, bicycle tire pressure and sizes, gear ratios, slope of the terrain affect the overall speed of the rider. A person pedalling with 100 W power can achieve 5.5 m/s on a roadster, 7.5 m/s on a racing bicycle, 10 m/s with a faired HPV and 14 m/s with an ultimate HPV. [9] In competitive cycling a sustainable high speed is augmented by the use of light materials, low-resistance tires, aerodynamic design, and the aerodynamic effects of the peloton. The group can maintain a higher speed over extended distance due to various cyclists taking turns at the head of the wind then dropping behind to rest. A team time trial produces the same effect.
Fitness cyclists use a speedometer or cyclocomputer to measure, record, and share several variables including speed, gradient, distance, time, cadence, slope, power (watts), temperature, GPS data, route, and even heart rate.
The highest speed officially recorded for any human-powered vehicle (HPV) on level ground and with calm winds and without external aids (such as motor pacing and wind-blocks, but including a defined amount of gravity assist) is 144.18 km/h (89.59 mph) set in 2016 by Todd Reichert in the Eta Speedbike, a streamlined recumbent bicycle. [12] In the 1989 Race Across America, a group of HPVs crossed the United States in just 5 days. [13] [14] [15] [16] The highest speed officially recorded for a bicycle ridden in a conventional upright position under fully faired conditions was 82 km/h (51 mph) over 200 m. [17] That record was set in 1986 by Jim Glover on a Moulton AM7 at the Human Powered Speed Championships during Expo86 World Fair in Vancouver. The fastest bicycle speed in slipstream is 296 km/h (183.9 mph), set by Denise Mueller-Korenek in 2018 on the Bonneville Salt Flats. This involved slipstreaming behind a dragster.
Dangerous steering wobble or shimmy may occur at high speeds, and also lower speeds with frames with high flexibility coupled with inadequate damping. [9]
This section needs additional citations for verification .(June 2021) |
There has been major corporate competition to lower the weight of racing bikes in order to be faster uphill and accelerating. The UCI sets a limit of 6.8 kg on the minimum weight of bicycles to be used in sanctioned races. [18]
For cycling on the level at a constant speed, a large weight reduction saves only a negligible amount of power and it is on the contrary beneficial to add mass in the form of aerodynamic improvements. But for climbing steeply, any weight reduction can be felt directly. E.g., a reduction of 10% of the total system weight (bicycle, rider, and luggage combined) will save nearly 10% power.
A reduced mass is also directly felt when accelerating. For example, the Analytic Cycling calculator Archived 2022-01-15 at the Wayback Machine gives a time/distance advantage of 0.16 s/188 cm for a sprinter with 500 g lighter wheels. In a criterium race, if a rider has to brake entering each corner, then this is wasted as heat. For a flat criterium at 40 km/h, 1 km circuit, 4 corners per lap, 10 km/h speed loss at each corner, one hour duration, there would be 160 corner "jumps". For 90 kg rider and bike, this adds roughly one third effort compared to the same ride at a steady speed, and a mass reduction of 10% of the total system weight (bicycle, rider, and luggage combined) could thus give about a 3% advantage.
The mass of tires and rims must be accelerated linearly and rotationally. It can be shown that the effect of rim and tire mass of typical spoked wheels is effectively doubled. Reducing their mass is thus especially noticeable in the case of sprints and corner "jumps" in a criterium. [19]
There are well-known equations that give the power required to overcome the various resistances mainly as a function of speed and operational parameters. [9]
The power needed to overcome air drag or resistance is:
where
The concept of apparent wind is only directly applicable here if it comes from a true headwind or tailwind. Then is the scalar sum of and the headwind or the difference between and the tailwind. If this difference is negative, must be regarded as assistance rather than resistance. If however the wind has a sideways component, the apparent wind must be calculated with a vector sum and, especially if the bicycle is streamlined, the calculation of lateral and drag forces becomes more complex; a proper treatment involves considering the forces on the surfaces like the forces on sails.
The drag coefficient depends on the shape of the object and on the Reynolds number, which itself depends on . However, if is the cross sectional area, can be roughly approximated as 1 for usual cycling speeds of a rider on an upright bicycle.
The power for overcoming the tires' rolling resistances is given by:
where is gravity, nominally 9.8 m/s^2, is the slope (rise over run), and is mass (kg).[ clarification needed ] The approximation can be used with all normal coefficients of rolling resistance . Usually this is assumed to be independent of (speed of the bicycle on the road) although it is recognized that it increases with speed. Measurements on a roller-mechanism give low-speed coefficients of 0.003 to 0.006 for a variety of tires inflated to their maximum recommended pressures, increasing about 50% at 10 m/s. [21]
The vertical climbing power on slope is given by
This approximation approaches the real solution for small, i.e. normal grades. For extremely steep slopes such as 0.35 the approximation gives an overestimation of about 6%.
As this power is used to increase the potential energy of bike and rider, it is returned as motive power when going downhill and not lost unless the rider brakes or travels faster than desired.
The power for accelerating the bike and rider having total mass m with acceleration a and rotationally also the wheels having mass is:
The approximation is valid if is assumed to be concentrated at the rims and tires and these are not slipping. The mass of such wheels can thus be counted twice for this calculation, independent of the wheels' sizes.
As this power is used to increase the kinetic energy of bike and rider, it is returned when decelerating and not lost unless the rider brakes or travels faster than desired.
The total power can be summed as:
where is the mechanical efficiency of the drive train described at the beginning of this article.
Given this simplified equation, one can calculate some values of interest. For example, assuming no wind, one gets the following results for power delivered to the pedals (watts):
Reducing the weight of the bike + rider by 1 kg would increase speed by 0.01 m/s at 9 m/s on the flat (5 seconds in a 32 km/h (20 mph), 40-kilometre (25 mile) time trial). The same reduction on a 7% grade would be worth 0.04 m/s (90 kg bike + rider) to 0.07 m/s (65 kg bike + rider). If one climbed for 1 hour, saving 453 grams (1 lb) would gain between 69 and 107 metres (225 and 350 ft) – less effect for the heavier bike + rider combination (e.g., 0.06 km/h (0.04 mph) ⋅ 1 h ⋅ 1,600 m (5,200 ft)/mi = 69 m (226 ft)). For reference, the big climbs in the Tour de France and the Giro d'Italia have the following average grades:
Tour de France gradients
A bicycle, also called a pedal cycle, bike, push-bike or cycle, is a human-powered or motor-assisted, pedal-driven, single-track vehicle, with two wheels attached to a frame, one behind the other. A bicycle rider is called a cyclist, or bicyclist.
A recumbent bicycle is a bicycle that places the rider in a laid-back reclining position. Recumbents are available in a wide range of configurations, including: long to short wheelbase; large, small, or a mix of wheel sizes; overseat, underseat, or no-hands steering; and rear wheel or front wheel drive. A variant with three wheels is a recumbent tricycle.
A velomobile ; velomobiel, velo, or bicycle car is a human-powered vehicle (HPV) enclosed for aerodynamic advantage and/or protection from weather and collisions. Velomobiles are similar to recumbent bicycles, pedal go-karts and tricycles, but with a full fairing and are not to be confused with purpose-built mobiles for speed records. Fully faired vehicles with two wheels, generally called Streamliners. Streamliners have set many speed and distance records.
A racing bicycle, also known as a road bike, is a bicycle designed for competitive road cycling, a sport governed by and according to the rules of the Union Cycliste Internationale (UCI).
Rolling resistance, sometimes called rolling friction or rolling drag, is the force resisting the motion when a body rolls on a surface. It is mainly caused by non-elastic effects; that is, not all the energy needed for deformation of the wheel, roadbed, etc., is recovered when the pressure is removed. Two forms of this are hysteresis losses, and permanent (plastic) deformation of the object or the surface. Note that the slippage between the wheel and the surface also results in energy dissipation. Although some researchers have included this term in rolling resistance, some suggest that this dissipation term should be treated separately from rolling resistance because it is due to the applied torque to the wheel and the resultant slip between the wheel and ground, which is called slip loss or slip resistance. In addition, only the so-called slip resistance involves friction, therefore the name "rolling friction" is to an extent a misnomer.
In fluid dynamics, drag, sometimes referred to as fluid resistance, is a force acting opposite to the relative motion of any object moving with respect to a surrounding fluid. This can exist between two fluid layers, two solid surfaces, or between a fluid and a solid surface. Drag forces tend to decrease fluid velocity relative to the solid object in the fluid's path.
A motorized bicycle is a bicycle with an attached motor or engine and transmission used either to power the vehicle unassisted, or to assist with pedalling. Since it sometimes retains both pedals and a discrete connected drive for rider-powered propulsion, the motorized bicycle is in technical terms a true bicycle, albeit a power-assisted one. Typically they are incapable of speeds above 52 km/h (32 mph); however, in recent years larger motors have been built, allowing bikes to reach speeds of upwards of 113 km/h.
An electric bicycle, e-bike, electrically assisted pedal cycle, or electrically power assisted cycle is a motorized bicycle with an integrated electric motor used to assist propulsion. Many kinds of e-bikes are available worldwide, but they generally fall into two broad categories: bikes that assist the rider's pedal-power and bikes that add a throttle, integrating moped-style functionality. Both retain the ability to be pedaled by the rider and are therefore not electric motorcycles. E-bikes use rechargeable batteries and typically are motor-powered up to 25 to 32 km/h. High-powered varieties can often travel up to or more than 45 km/h (28 mph).
Many countries have enacted electric vehicle laws to regulate the use of electric bicycles, also termed e-bikes. Some jurisdictions have regulations governing safety requirements and standards of manufacture. The members of the European Union and other regions have wider-ranging legislation covering use and safety.
A cycling power meter is a device on a bicycle that measures the power output of the rider. Most cycling power meters use strain gauges to measure torque applied, and when combined with angular velocity, calculate power.
The maximal total range is the maximum distance an aircraft can fly between takeoff and landing. Powered aircraft range is limited by the aviation fuel energy storage capacity considering both weight and volume limits. Unpowered aircraft range depends on factors such as cross-country speed and environmental conditions. The range can be seen as the cross-country ground speed multiplied by the maximum time in the air. The fuel time limit for powered aircraft is fixed by the available fuel and rate of consumption.
Bicycle and motorcycle dynamics is the science of the motion of bicycles and motorcycles and their components, due to the forces acting on them. Dynamics falls under a branch of physics known as classical mechanics. Bike motions of interest include balancing, steering, braking, accelerating, suspension activation, and vibration. The study of these motions began in the late 19th century and continues today.
A Pedelec or EPAC, is a type of low-powered electric bicycle where the rider's pedalling is assisted by a small electric motor. However, unlike some other types of e-bikes, pedelecs are classified as conventional bicycles in many countries by road authorities rather than as a type of electric moped. Pedelecs have an electronic controller that cuts power to the motor when the rider is not pedalling or when a certain speed – usually 25 km/h (16 mph) or 32 km/h (20 mph) – is reached. Pedelecs are useful for people who ride in hilly areas or in strong headwinds. While a pedelec can be any type of bicycle, a pedelec city bike is common. A conventional bicycle can be converted to a pedelec with the addition of the necessary parts, e.g., motor, battery, etc.
The energy efficiency in transport is the useful travelled distance, of passengers, goods or any type of load; divided by the total energy put into the transport propulsion means. The energy input might be rendered in several different types depending on the type of propulsion, and normally such energy is presented in liquid fuels, electrical energy or food energy. The energy efficiency is also occasionally known as energy intensity. The inverse of the energy efficiency in transport is the energy consumption in transport.
A prone bicycle is a bicycle which places the rider in a prone position. The bottom bracket is located at the bicycle's rear; the rider lies either on a pad or in a hard-shell seat. The prone position of the rider's body can reduce aerodynamic drag and therefore increase the efficiency of the vehicle. It can also be more comfortable or ergonomic than other bicycles.
A wheelie, or wheelstand, is a vehicle maneuver in vehicle acrobatics in which the front wheel or wheels come off the ground due to sufficient torque being applied to the rear wheel or wheels, or rider motion relative to the vehicle. Wheelies are usually associated with bicycles and motorcycles, but can be done with other vehicles such as cars, especially in drag racing and tractor pulling.
Motorcycle testing and measurement includes a range of more than two dozen statistics giving the specifications of the motorcycle, and the actual performance, expressed by such things as the output of the engine, and the top speed or acceleration of the motorcycle. Most parameters are uncontroversial and claims made by manufacturers are generally accepted without verification. These might include simple measurements like rake, trail, or wheelbase, or basic features, such as the type of brakes or ignition system.
Time trials have been part of cycling for more than a hundred years. The first time trial was run in 1895 after a ban on road racing was imposed by the National Cyclists' Union. It wasn't until 1939 that the time trial made its world stage debut as an official stage of the Tour de France. It was originally used as a method of drawing more people to listen to the Grand Tour on the newly available radio broadcast of the 1939 race. The main thing that distinguished the first time-trial from the traditional form of road racing was that the riders started at intervals instead of one large group and they raced against the clock instead of each other. Unlike road racing where the a rider can hang in the peloton and draft off of other riders to conserve energy, time trial races put the rider out alone on the course. There are no breaks and no one to draft off, causing a rider to push as hard as they can the entire race. Bicycles have also evolved to accommodate this new form of racing, with most of the breakthroughs occurring in the last 40–50 years with the introduction of triathlons.
The Kawasaki Ninja H2 is a supercharged four-stroke supersport-class motorcycle in the Ninja sports bike series manufactured by Kawasaki, featuring a variable-speed centrifugal supercharger.
{{cite journal}}
: Cite journal requires |journal=
(help)