Earth Similarity Index

Last updated
Though differing in size and temperature, terrestrial planets of the Solar System were reported to have high Earth Similarity Index values - Mercury, Venus, Earth and Mars. Sizes to scale. Terrestrial planet sizes2.jpg
Though differing in size and temperature, terrestrial planets of the Solar System were reported to have high Earth Similarity Index values – Mercury, Venus, Earth and Mars. Sizes to scale.

The Earth Similarity Index (ESI) is a proposed characterization of how similar a planetary-mass object or natural satellite is to Earth. It was designed to be a scale from zero to one, with Earth having a value of one; this is meant to simplify planet comparisons from large databases.

Contents

The scale has no quantitative meaning for habitability.

Formulation

The ESI, as proposed in 2011 by Schulze-Makuch et al. in the journal Astrobiology , incorporates a planet's radius, density, escape velocity, and surface temperature into the index. [1] Thus the authors describe the index as having two components: (1) associated with the interior which is associated with the mean radius and bulk density, and (2) associated with the surface which is associated with the escape velocity and surface temperature. An article on the ESI formulation derivation is made available by Kashyap Jagadeesh et al.(2017). [2] ESI was also referenced in an article published in Revista Cubana de Física . [3]

For exoplanets, in almost every case only the planet's orbital period along with either the proportional dimming of the star due to the planet's transit or the radial velocity variation of the star in response to the planet is known with any degree of certainty, and so every other property not directly determined by those measurements is speculative. For example, while surface temperature is influenced by a variety of factors including irradiance, tidal heating, albedo, insolation and greenhouse warming, as these factors are not known for any exoplanet, quoted ESI values use planetary equilibrium temperature as a stand-in. [1]

A webpage maintained by one of the authors of the 2011 Astrobiology article, Abel Méndez at the University of Puerto Rico at Arecibo, lists his calculations of the index for various exoplanetary systems. [4] Méndez's ESI is calculated as

,

where and are properties of the extraterrestrial body and of Earth respectively, is the weighted exponent of each property, and is the total number of properties. It is comparable to, and constructed from, the Bray–Curtis Similarity Index. [4] [5] The weight assigned to each property, , are free parameters that can be chosen to emphasize certain characteristics over others or to obtain desired index thresholds or rankings. The webpage also ranks what it describes as the habitability of planets and moons according to three criteria: the location in the habitable zone, ESI, and a speculation as to a capacity to sustain organisms at the bottom of the food chain, a different index collated on the webpage identified as the "Global Primary Habitability scale". [6]

The 2011 Astrobiology article and the ESI values found in it received press attention at the time of the article's publication. As a result, Mars was reported to have the second-highest ESI in the Solar System with a value of 0.70. [7] A number of exoplanets listed in that article were reported to have values in excess of this.

Other ESI values that have been reported by third parties include the following sources: [7] [4]

No relation to habitability

Although the ESI does not characterize habitability, given the point of reference is the Earth, some of its functions match those used by habitability measures. As with the definition of the habitable zone, the ESI uses surface temperature as a primary function (and the terrestrial point of reference). A 2016 article uses ESI as a target selection scheme and obtains results showing that the ESI has little relation to the habitability of an exoplanet, as it takes no account of the activity of the star, planetary tidal locking, nor the planet's magnetic field (i.e. ability to protect itself) which are among the keys to habitable surface conditions. [8]

It has been noted that ESI fails to differentiate between Earth similarity and Venus similarity, where planets with a lower ESI have a greater chance at habitability. [9]

Planets with an Earth-like size

Comparison of the sizes of planets Kepler-69c, Kepler-62e, Kepler-62f, and the Earth. All planets except the Earth are artists' conceptions. Relative sizes of all of the habitable-zone planets discovered to date alongside Earth.jpg
Comparison of the sizes of planets Kepler-69c, Kepler-62e, Kepler-62f, and the Earth. All planets except the Earth are artists' conceptions.

The classification of exoplanets is difficult in that many methods of exoplanet detection leave several features unknown. For example, with the transit method, measurement of radius can be highly accurate, but mass and density are often estimated. Likewise with radial velocity methods, which can provide accurate measurements of mass but are less successful measuring radius. Planets observed via a number of different methods therefore can be most accurately compared to Earth.

Similarity of non-planets to Earth

The Moon, Io and Earth shown to scale. Although significantly smaller, some of the Solar System's moons and dwarf planets share similarities to Earth's density and temperature. Io, Earth & Moon size comparison.jpg
The Moon, Io and Earth shown to scale. Although significantly smaller, some of the Solar System's moons and dwarf planets share similarities to Earth's density and temperature.

The index can be calculated for objects other than planets, including natural satellites, dwarf planets and asteroids. The lower average density and temperature of these objects give them lower index values. Only Titan (a moon of Saturn) is known to hold on to a significant atmosphere despite an overall lower size and density. While Io (a moon of Jupiter) has a low average temperature, surface temperature on the moon varies wildly due to geologic activity. [10]

See also

Related Research Articles

<span class="mw-page-title-main">Terrestrial planet</span> Planet that is composed primarily of silicate rocks or metals

A terrestrial planet, telluric planet, or rocky planet, is a planet that is composed primarily of silicate rocks or metals. Within the Solar System, the terrestrial planets accepted by the IAU are the inner planets closest to the Sun: Mercury, Venus, Earth and Mars. Among astronomers who use the geophysical definition of a planet, two or three planetary-mass satellites – Earth's Moon, Io, and sometimes Europa – may also be considered terrestrial planets; and so may be the rocky protoplanet-asteroids Pallas and Vesta. The terms "terrestrial planet" and "telluric planet" are derived from Latin words for Earth, as these planets are, in terms of structure, Earth-like. Terrestrial planets are generally studied by geologists, astronomers, and geophysicists.

<span class="mw-page-title-main">Rare Earth hypothesis</span> Hypothesis that complex extraterrestrial life is improbable and extremely rare

In planetary astronomy and astrobiology, the Rare Earth hypothesis argues that the origin of life and the evolution of biological complexity such as sexually reproducing, multicellular organisms on Earth required an improbable combination of astrophysical and geological events and circumstances.

<span class="mw-page-title-main">Habitable zone</span> Orbits where planets may have liquid surface water

In astronomy and astrobiology, the habitable zone (HZ), or more precisely the circumstellar habitable zone (CHZ), is the range of orbits around a star within which a planetary surface can support liquid water given sufficient atmospheric pressure. The bounds of the HZ are based on Earth's position in the Solar System and the amount of radiant energy it receives from the Sun. Due to the importance of liquid water to Earth's biosphere, the nature of the HZ and the objects within it may be instrumental in determining the scope and distribution of planets capable of supporting Earth-like extraterrestrial life and intelligence.

<span class="mw-page-title-main">Planetary habitability</span> Known extent to which a planet is suitable for life

Planetary habitability is the measure of a planet's or a natural satellite's potential to develop and maintain environments hospitable to life. Life may be generated directly on a planet or satellite endogenously or be transferred to it from another body, through a hypothetical process known as panspermia. Environments do not need to contain life to be considered habitable nor are accepted habitable zones (HZ) the only areas in which life might arise.

<span class="mw-page-title-main">HD 69830 d</span> Ice giant exoplanet orbiting HD 69830

HD 69830 d is an exoplanet likely orbiting within the habitable zone of the star HD 69830, the outermost of three such planets discovered in the system. It is located approximately 40.7 light-years (12.49 parsecs, or 3.8505×1014 km) from Earth in the constellation of Puppis. The exoplanet was found by using the radial velocity method, from radial-velocity measurements via observation of Doppler shifts in the spectrum of the planet's parent star.

<span class="mw-page-title-main">Ocean world</span> Planet containing a significant amount of water or other liquid

An ocean world, ocean planet, panthalassic planet, maritime world, water world or aquaplanet, is a type of planet that contains a substantial amount of water in the form of oceans, as part of its hydrosphere, either beneath the surface, as subsurface oceans, or on the surface, potentially submerging all dry land. The term ocean world is also used sometimes for astronomical bodies with an ocean composed of a different fluid or thalassogen, such as lava, ammonia or hydrocarbons. The study of extraterrestrial oceans is referred to as planetary oceanography.

<span class="mw-page-title-main">Super-Earth</span> Planet with a mass between Earth and Uranus

A Super-Earth is a type of exoplanet with a mass higher than Earth's, but substantially below those of the Solar System's ice giants, Uranus and Neptune, which are 14.5 and 17 times Earth's, respectively. The term "super-Earth" refers only to the mass of the planet, and so does not imply anything about the surface conditions or habitability. The alternative term "gas dwarfs" may be more accurate for those at the higher end of the mass scale, although "mini-Neptunes" is a more common term.

<span class="mw-page-title-main">Habitability of natural satellites</span> Measure of the potential of natural satellites to have environments hospitable to life

The habitability of natural satellites is the potential of moons to provide habitats for life, though it is not an indicator that they harbor it. Natural satellites are expected to outnumber planets by a large margin and the study of their habitability is therefore important to astrobiology and the search for extraterrestrial life. There are, nevertheless, significant environmental variables specific to moons.

<span class="mw-page-title-main">Gliese 581g</span> Former candidate super-Earth orbiting Gliese 581

Gliese 581g was a candidate exoplanet postulated to orbit within the Gliese 581 system, twenty light-years from Earth. It was discovered by the Lick–Carnegie Exoplanet Survey, and was the sixth planet claimed to orbit the star; however, its existence could not be confirmed by the European Southern Observatory (ESO) / High Accuracy Radial Velocity Planet Searcher (HARPS) survey team, and was ultimately refuted. It was thought to be near the middle of the habitable zone of its star, meaning it could sustain liquid water—a necessity for all known life—on its surface, if there are favorable atmospheric conditions on the planet.

<span class="mw-page-title-main">Kepler-22b</span> Super-Earth exoplanet orbiting Kepler-22

Kepler-22b is an exoplanet orbiting within the habitable zone of the Sun-like star Kepler-22. It is located about 640 light-years from Earth in the constellation of Cygnus. It was discovered by NASA's Kepler Space Telescope in December 2011 and was the first known transiting planet to orbit within the habitable zone of a Sun-like star, where liquid water could exist on the planet's surface. Kepler-22 is too dim to be seen with the naked eye.

Directed panspermia is the deliberate transport of microorganisms into space to be used as introduced species on other astronomical objects.

The planetary equilibrium temperature is a theoretical temperature that a planet would be if it was in radiative equilibrium, typically under the assumption that it radiates as a black body being heated only by its parent star. In this model, the presence or absence of an atmosphere is irrelevant, as the equilibrium temperature is calculated purely from a balance with incident stellar energy.

<span class="mw-page-title-main">Kepler-62f</span> Super-Earth orbiting Kepler-62

Kepler-62f is a super-Earth exoplanet orbiting within the habitable zone of the star Kepler-62, the outermost of five such planets discovered around the star by NASA's Kepler spacecraft. It is located about 980 light-years from Earth in the constellation of Lyra.

Kepler-61b is a super-Earth exoplanet orbiting within parts of the habitable zone of the K-type main-sequence star Kepler-61. It is located about 1,100 light-years from Earth in the constellation of Cygnus. It was discovered in 2013 using the transit method, in which the dimming effect that a planet causes as it crosses in front of its star is measured, by NASA's Kepler spacecraft.

<span class="mw-page-title-main">Superhabitable planet</span> Hypothetical type of planet that may be better-suited for life than Earth

A superhabitable planet is a hypothetical type of exoplanet or exomoon that may be better suited than Earth for the emergence and evolution of life. The concept was introduced in 2014 by René Heller and John Armstrong, who have criticized the language used in the search for habitable planets and proposed clarifications. According to Heller and Armstrong, knowing whether or not a planet is in its host star's habitable zone (HZ) is insufficient to determine its habitability: It is not clear why Earth should offer the most suitable physicochemical parameters to living organisms, as "planets could be non-Earth-like, yet offer more suitable conditions for the emergence and evolution of life than Earth did or does." While still assuming that life requires water, they hypothesize that Earth may not represent the optimal planetary habitability conditions for maximum biodiversity; in other words, they define a superhabitable world as a terrestrial planet or moon that could support more diverse flora and fauna than there are on Earth, as it would empirically show that its environment is more hospitable to life.

HD 219134 g, also known as HR 8832 g, is an unconfirmed exoplanet orbiting around the K-type star HD 219134 in the constellation of Cassiopeia. It has a minimum mass of 11 or 15 Earth masses, suggesting that it is likely a Neptune-like ice giant. Unlike HD 219134 b and HD 219134 c it is not observed to transit and thus its radius and density are unknown. If it has an Earth-like composition, it would have a radius 1.9 times that of Earth. However, since it is probably a Neptune-like planet, it is likely larger.

<span class="mw-page-title-main">Exoplanet interiors</span> Exoplanet internal structure

Over the years, our ability to detect, confirm, and characterize exoplanets and their atmospheres has improved, allowing researchers to begin constraining exoplanet interior composition and structure. While most exoplanet science is focused on exoplanetary atmospheric environments, the mass and radius of a planet can tell us about a planet's density, and hence, its internal processes. The internal processes of a planet are partly responsible for its atmosphere, and so they are also a determining factor in a planet's capacity to support life.

<span class="mw-page-title-main">Habitability of yellow dwarf systems</span> Likelihood of finding extraterrestrial life in yellow dwarf systems

Habitability of yellow dwarf systems defines the suitability for life of exoplanets belonging to yellow dwarf stars. These systems are the object of study among the scientific community because they are considered the most suitable for harboring living organisms, together with those belonging to K-type stars.

GJ 1002 b is a potentially habitable exoplanet located 16 light years away, in the constellation of Cetus. The planet, which has an Earth Similarity Index of 86%, is in the habitable zone of its parent star. GJ 1002 b has a minimum mass of 1.08 Earth masses and is estimated by the Planetary Habitability Laboratory to have 1.03 times the radius of Earth and a surface temperature of 261 Kelvin.

References

  1. 1 2 Schulze-Makuch, D.; Méndez, A.; Fairén, A. G.; von Paris, P.; Turse, C.; Boyer, G.; Davila, A. F.; Resendes de Sousa António, M.; Catling, D. & Irwin, L. N. (2011). "A Two-Tiered Approach to Assess the Habitability of Exoplanets". Astrobiology. 11 (10): 1041–1052. Bibcode:2011AsBio..11.1041S. doi:10.1089/ast.2010.0592. PMID   22017274.
  2. Kashyap Jagadeesh M.; Gudennavar, S. B.; Doshi U. & Safonova M. (2017). "Indexing of exoplanets in search for potential habitability: application to Mars-like worlds". Astrophysics and Space Science. 362 (8): 1572–946X. arXiv: 1608.06702 . Bibcode:2017Ap&SS.362..146K. doi:10.1007/s10509-017-3131-y. S2CID   119097653.
  3. Gonzalez, A.; Cardenas, R. & Hearnshaw, J. (2013). "Possibilities of life around Alpha Centauri B.". Revista Cubana de Física. 30 (2): 81. arXiv: 1401.2211 . Bibcode:2014arXiv1401.2211G.
  4. 1 2 3 "Earth Similarity Index (ESI)". Planetary Habitability Laboratory.
  5. Rushby, A. (2013). "A multiplicity of worlds: Other habitable planets". Significance. 10 (5): 11–15. doi: 10.1111/j.1740-9713.2013.00690.x .
  6. Sample, I. (December 5, 2011). "Habitable exoplanets catalogue ranks alien worlds on suitability for life". The Guardian . Retrieved April 9, 2016.
  7. 1 2 "Most liveable alien worlds ranked". BBC. November 23, 2011. Retrieved April 10, 2016.
  8. Armstrong, D. J.; Pugh, C. E.; Broomhall, A.-M.; Brown, D. J. A.; Lund, M. N.; Osborn, H. P.; Pollacco, D. L. (2016). "The host stars of Kepler's habitable exoplanets: superflares, rotation and activity". Monthly Notices of the Royal Astronomical Society. 5 (3): 3110–3125. arXiv: 1511.05306 . Bibcode:2016MNRAS.455.3110A. doi:10.1093/mnras/stv2419.
  9. Elizabeth Tasker (July 9, 2014). "No, that new exoplanet is not the best candidate to support life". The Conversation . Retrieved November 5, 2018.
  10. Keszthelyi, L.; et al. (2007). "New estimates for Io eruption temperatures: Implications for the interior". Icarus. 192 (2): 491–502. Bibcode:2007Icar..192..491K. doi:10.1016/j.icarus.2007.07.008.