Famatinian orogeny

Last updated
Paleogeographic reconstruction of Gondwana and Laurentia about 70 million years before the Famatinian orogeny. The Famatinian orogeny took place near the right border of the area marked as "Rio Plata". Terranes and microcontinents such as Cuyania, Pampia and Chilenia are omitted. Positions of ancient continents, 550 million years ago.jpg
Paleogeographic reconstruction of Gondwana and Laurentia about 70 million years before the Famatinian orogeny. The Famatinian orogeny took place near the right border of the area marked as "Río Plata". Terranes and microcontinents such as Cuyania, Pampia and Chilenia are omitted.

The Famatinian orogeny (Spanish : Orogenia de Famatina) is an orogeny that predates the rise of the Andes and that took place in what is now western South America [note 1] during the Paleozoic, leading to the formation of the Famatinian orogen also known as the Famatinian belt. The Famatinian orogeny lasted from the Late Cambrian to at least the Late Devonian and possibly the Early Carboniferous, with orogenic activity peaking about 490 to 460 million years ago. [1] The orogeny involved metamorphism and deformation in the crust and the eruption and intrusion of magma along a Famatinian magmatic arc that formed a chain of volcanoes. [2] The igneous rocks of the Famatinian magmatic arc are of calc-alkaline character and include gabbros, tonalites, granodiorites and trondhjemites. [1] [3] The youngest igneous rocks of the arc are granites. [1]

Contents

Part of the pegmatite dykes of the Pampean Pegmatite Province formed during the orogeny. [4] These dykes are thought to be derived from S-type granitic melts. [4]

The relationship of the orogeny with the Achala and Cerro Aspero batholiths of central Argentina is not fully understood. These Devonian batholiths are possibly of post-orogenic character. [5] [6]

Outcrops and sediments

The Famatinian orogen's main outcrops lie in Sierras Pampeanas in northwestern Argentina. [1] [7] Only the western part of Sierras Pampeanas bears evidence of the Famatinian orogeny; the eastern parts appear to have been largely unaffected. [1] In northern Chile the Belén Metamorphic Complex is thought to have been subject to metamorphism that was "time-equivalent" to the Famatinian orogeny in the early Paleozoic. [7] It can this be considered part of the orogen in a broad sense. [7] To the south in La Pampa Province, outcrops associated with the orogeny are scarce since most of that region has become blanketed by much more recent Quaternary sediments. [8]

In Peru's Cordillera Oriental a "Famatinian" orogeny exists which is coeval with the classical Famatinian orogeny found further south. In the time-span from 480 Ma to 435 Ma (Late Cambrian to Silurian) rocks of Cordillera Oriental were deformed and a magmatic arc developed. [9]

Towards what is now the east of the Famatinian magmatic arc a Precambrian sedimentary basin developed into a back-arc basin during the Ordovician. This basin went from Peru, through Bolivia to northwestern Argentina. The basin collected sediments from the Famatinian orogen and arc and while it did not contain oceanic crust it was a marine basin. [10]

Plutonic rocks cropping out in Cordón de Lila and Sierra de Almeida south of Salar de Atacama in Chile formed in the Cambrian and Ordovician in association with the orogeny. [11] The compositions of the plutonic rocks are granodiorite and monzogranite that are either metaluminous or peraluminous. [11] These rocks are remnants of the magmatism along the western rim of the Famatinian orogeny. [11]

Plate tectonic setting

Famatinian arc magmatism was caused by the subduction of Iapetus Ocean lithosphere beneath Gondwana. [8] As subduction went on, the peak of the orogeny resulted from the collision of the Cuyania terrane with Pampia in the Ordovician. [12]

It has been suggested that the coeval Appalachian Taconic orogeny is the "northward" continuation of the Famatinian orogeny. [note 2] This has been explained by adding that the continent Laurentia could have collided with Gondwana (at what is today western South America) in early Paleozoic times due to the closure of the Iapetus Ocean. [13] Supporting this hypothesis is the suggestion that the orogens have "truncated ends" that can be matched and that both share the commonality of having carbonate platform sediments at what is today their western side. [13] [14] Further, in the mentioned sediments both orogens host similar Olenellid trilobite faunas, something that is not expected to be unless both orogens had some sort of contact. [13] This is because trilobites are unable to cross deep ocean basins. [15] According to this view the Cuyania terrane would be an allochthonous block of Laurentian origin that was left in Gondwana after the continents went apart. But such views are not unchallenged since Cuyania is alternatively suggested to have drifted across Iapetus Ocean as a microcontinent starting in Laurentia and accreting then to Gondwana. Further a third model claims Cuyania is para-autochthonous and arrived at its current place by strike-slip fault movements starting not from Laurentia but from another region of Gondwana. [12] The fact that Precordillera terrane has many trilobite genera in common with Laurentia but many species are endemic have led to some differing interpretations on what paleogeographic and tectonic history conditions are plausible explanations for this biogeography. [15]

Notes

  1. All coordinates in this article are in relation to present-day geography and not to the past disposition of continents, terranes and oceans.
  2. In other words: what is at present the northern end of the Famatinian orogen would have been connected with what is currently the southern end of the Taconic orogen.

Related Research Articles

<span class="mw-page-title-main">Iapetus Ocean</span> Ocean that existed in the late Neoproterozoic and early Paleozoic eras

The Iapetus Ocean was an ocean that existed in the late Neoproterozoic and early Paleozoic eras of the geologic timescale. The Iapetus Ocean was situated in the southern hemisphere, between the paleocontinents of Laurentia, Baltica and Avalonia. The ocean disappeared with the Acadian, Caledonian and Taconic orogenies, when these three continents joined to form one big landmass called Euramerica. The "southern" Iapetus Ocean has been proposed to have closed with the Famatinian and Taconic orogenies, meaning a collision between Western Gondwana and Laurentia.

<span class="mw-page-title-main">Baltica</span> Late-Proterozoic to early-Palaeozoic continent

Baltica is a paleocontinent that formed in the Paleoproterozoic and now constitutes northwestern Eurasia, or Europe north of the Trans-European Suture Zone and west of the Ural Mountains. The thick core of Baltica, the East European Craton, is more than three billion years old and formed part of the Rodinia supercontinent at c.Ga.

<span class="mw-page-title-main">Avalonia</span> Microcontinent in the Paleozoic era named for the Avalon Peninsula in Newfoundland

Avalonia was a microcontinent in the Paleozoic era. Crustal fragments of this former microcontinent underlie south-west Great Britain, southern Ireland, and the eastern coast of North America. It is the source of many of the older rocks of Western Europe, Atlantic Canada, and parts of the coastal United States. Avalonia is named for the Avalon Peninsula in Newfoundland.

<span class="mw-page-title-main">Acadian orogeny</span> North American orogeny

The Acadian orogeny is a long-lasting mountain building event which began in the Middle Devonian, reaching a climax in the early Late Devonian. It was active for approximately 50 million years, beginning roughly around 375 million years ago, with deformational, plutonic, and metamorphic events extending into the Early Mississippian. The Acadian orogeny is the third of the four orogenies that formed the Appalachian orogen and subsequent basin. The preceding orogenies consisted of the Potomac and Taconic orogeny, which followed a rift/drift stage in the Late Neoproterozoic. The Acadian orogeny involved the collision of a series of Avalonian continental fragments with the Laurasian continent. Geographically, the Acadian orogeny extended from the Canadian Maritime provinces migrating in a southwesterly direction toward Alabama. However, the Northern Appalachian region, from New England northeastward into Gaspé region of Canada, was the most greatly affected region by the collision.

<span class="mw-page-title-main">Taconic orogeny</span> Mountain-building period that affected most of New England

The Taconic orogeny was a mountain building period that ended 440 million years ago and affected most of modern-day New England. A great mountain chain formed from eastern Canada down through what is now the Piedmont of the East coast of the United States. As the mountain chain eroded in the Silurian and Devonian periods, sediments from the mountain chain spread throughout the present-day Appalachians and midcontinental North America.

<span class="mw-page-title-main">Caledonian orogeny</span> Mountain building event caused by the collision of Laurentia, Baltica and Avalonia

The Caledonian orogeny was a mountain-building era recorded in the northern parts of the British Isles, the Scandinavian Mountains, Svalbard, eastern Greenland and parts of north-central Europe. The Caledonian orogeny encompasses events that occurred from the Ordovician to Early Devonian, roughly 490–390 million years ago (Ma). It was caused by the closure of the Iapetus Ocean when the continents and terranes of Laurentia, Baltica and Avalonia collided.

<span class="mw-page-title-main">Gondwana</span> Neoproterozoic to Cretaceous landmass

Gondwana was a large landmass, sometimes referred to as a supercontinent. It was formed by the accretion of several cratons, beginning c. 800 to 650Ma with the East African Orogeny, the collision of India and Madagascar with East Africa, and was completed c.600 to 530 Ma with the overlapping Brasiliano and Kuunga orogenies, the collision of South America with Africa, and the addition of Australia and Antarctica, respectively. Eventually, Gondwana became the largest piece of continental crust of the Palaeozoic Era, covering an area of about 100,000,000 km2 (39,000,000 sq mi), about one-fifth of the Earth's surface. It fused with Euramerica during the Carboniferous to form Pangea. It began to separate from northern Pangea (Laurasia) during the Triassic, and started to fragment during the Early Jurassic. The final stages of break-up, involving the separation of Antarctica from South America and Australia, occurred during the Paleogene (from around 66 to 23 million years ago. Gondwana was not considered a supercontinent by the earliest definition, since the landmasses of Baltica, Laurentia, and Siberia were separated from it. To differentiate it from the Indian region of the same name, it is also commonly called Gondwanaland.

<span class="mw-page-title-main">Laurentia</span> A large continental craton that forms the ancient geological core of the North American continent

Laurentia or the North American Craton is a large continental craton that forms the ancient geological core of North America. Many times in its past, Laurentia has been a separate continent, as it is now in the form of North America, although originally it also included the cratonic areas of Greenland and also the northwestern part of Scotland, known as the Hebridean Terrane. During other times in its past, Laurentia has been part of larger continents and supercontinents and itself consists of many smaller terranes assembled on a network of Early Proterozoic orogenic belts. Small microcontinents and oceanic islands collided with and sutured onto the ever-growing Laurentia, and together formed the stable Precambrian craton seen today.

The Precordillera Terrane or Cuyania was an ancient microcontinent or terrane whose history affected many of the older rocks of Cuyo in Argentina. It was separated by oceanic crust from the Chilenia terrane which accreted into it at ~420-390 Ma when Cuyania was already amalgamated with Gondwana. The hypothesized Mejillonia Terrane in the coast of northern Chile is considered by some geologists to be a single block with Cuyania.

<span class="mw-page-title-main">Carolina terrane</span> Exotic terrane from central Georgia to central Virginia in the United States

The Carolina Terrane, also called the Carolina Superterrane or Carolinia, is an exotic terrane running ~370 miles (600 km) approximately North-South from central Georgia to central Virginia in the United States. It constitutes a major part of the eastern Piedmont Province.

<span class="mw-page-title-main">Sierras Pampeanas</span> Mountain in Argentina

The Sierras Pampeanas is a geographical region of Argentina.

<span class="mw-page-title-main">Andean orogeny</span> Ongoing mountain-forming process in South America

The Andean orogeny is an ongoing process of orogeny that began in the Early Jurassic and is responsible for the rise of the Andes mountains. The orogeny is driven by a reactivation of a long-lived subduction system along the western margin of South America. On a continental scale the Cretaceous and Oligocene were periods of re-arrangements in the orogeny. The details of the orogeny vary depending on the segment and the geological period considered.

<span class="mw-page-title-main">Terra Australis Orogen</span>

The Terra Australis Orogen (TAO) was the oceanic southern margin of Gondwana which stretched from South America to Eastern Australia and encompassed South Africa, West Antarctica, New Zealand and Victoria Land in East Antarctica.

<span class="mw-page-title-main">Pampean orogeny</span>

The Pampean orogeny was an orogeny active in the Cambrian in the western margin of the ancient landmass of Gondwana. The orogen's remains can now be observed in central Argentina, in particular at the Sierras de Córdoba and other parts of the eastern Sierras Pampeanas. It is uncertain if the orogeny involved at some point a continental collision. The Pampean orogen can be considered both part of the larger Terra Australis orogen and of the Brasiliano orogeny. The Pampean orogeny was succeeded by the Famatinian orogeny further west.

Puncoviscana Formation is a formation of sedimentary and metasedimentary rocks Late Ediacaran and Lower Cambrian age, estimated at between 700 and 535 Ma, that crop out in the Argentine Northwest. Most of the formation lies in Jujuy, Salta and Tucumán Province albeit some authors extend the formation further south to the Sierras Pampeanas near Córdoba.

<span class="mw-page-title-main">Geological history of the Precordillera terrane</span>

The Precordillera terrane of western Argentina is a large mountain range located southeast of the main Andes mountain range. The evolution of the Precordillera is noted for its unique formation history compared to the region nearby. The Cambrian-Ordovian sedimentology in the Precordillera terrane has its source neither from old Andes nor nearby country rock, but shares similar characteristics with the Grenville orogeny of eastern North America. This indicates a rift-drift history of the Precordillera in the early Paleozoic. The Precordillera is a moving micro-continent which started from the southeast part of the ancient continent Laurentia. The separation of the Precordillera started around the early Cambrian. The mass collided with Gondwana around Late Ordovician period. Different models and thinking of rift-drift process and the time of occurrence have been proposed. This page focuses on the evidence of drifting found in the stratigraphical record of the Precordillera, as well as exhibiting models of how the Precordillera drifted to Gondwana.

<span class="mw-page-title-main">Tectonic evolution of Patagonia</span>

Patagonia comprises the southernmost region of South America, portions of which lie on either side of the Argentina-Chile border. It has traditionally been described as the region south of the Rio Colorado, although the physiographic border has more recently been moved southward to the Huincul fault. The region's geologic border to the north is composed of the Rio de la Plata craton and several accreted terranes comprising the La Pampa province. The underlying basement rocks of the Patagonian region can be subdivided into two large massifs: the North Patagonian Massif and the Deseado Massif. These massifs are surrounded by sedimentary basins formed in the Mesozoic that underwent subsequent deformation during the Andean orogeny. Patagonia is known for its vast earthquakes and the damage they cause.

The geology of Argentina includes ancient Precambrian basement rock affected by the Grenville orogeny, sediment filled basins from the Mesozoic and Cenozoic as well as newly uplifted areas in the Andes.

<span class="mw-page-title-main">Geology of Peru</span>

The geology of Peru includes ancient Proterozoic rocks, Paleozoic and Mesozoic volcanic and sedimentary rocks, and numerous basins and the Andes Mountains formed in the Cenozoic.

References

  1. 1 2 3 4 5 Alvarado, Patricia; Castro de Machuca, Brígida; Beck, Susan (2005). "Comparative seismic and petrographic crustal study between the Western and Eastern Sierras Pampeanas region (31ºS)" (PDF). Revista de la Asociación Geológica Argentina . 60 (4): 787–796.
  2. González, Pablo Diego; Sato, Ana María; Basei, Miguel A.S.; Vlach, Silvio R.F.; Llambías, Jorge (2002). Structure, metamorphism and age of the Pampean-Famatinian orogenies in the western Sierra de San Luis (PDF). Actas XV Congreso Geológico Argentino. Retrieved 18 September 2015.
  3. Geuna, Silvana E.; Escostegoy, Leonardo D.; Díaz Appella, Belena; Pinotti, Lucio; D'Eramo, Fernando; Hollanda, Maria Helena B.M. (2021). "The geodynamic evolution of the Famatinian orogen from the paleomagnetic record of El Hongo trondhjemite (Early Paleozoic, Sierras Pampeanas de Córdoba, Argentina)". Journal of South American Earth Sciences . 106.
  4. 1 2 Galliski, Miguel Ángel; Márquez-Zavalía, María Florencia; Roda-Robles, Encarnación; von Quadt, Albrecht (2022). "The Li-Bearing Pegmatites from the Pampean Pegmatite Province, Argentina: Metallogenesis and Resources". Minerals. MDPI. 12 (7). doi:10.3390/min12070841.
  5. Lira, Raúl; Kirschbaum, Alicia M. (1990). "Geochemical evolution of granites". In Mahlburg Kay, Suzanne; Rapela, Carlos W. (eds.). Plutonism from Antarctica to Alaska. Geological Society of America Special Paper. Vol. 241. p. 67–76.
  6. Pinotti, L.P.; Coniglio, J.E.; Esparza, A.M.; D'Eramo, F.J.; Llambías, E.J. (2002). "Nearly circular plutons emplaced by stoping at shallow crustal levels, Cerro Aspero batholith, Sierras Pampeanas de Córdoba, Argentina". Journal of South American Earth Sciences . 15 (2): 251–265. Bibcode:2002JSAES..15..251P. doi:10.1016/S0895-9811(02)00033-0.
  7. 1 2 3 Hervé, Francisco; Faundez, Victor; Calderón, Mauricio; Massonne, Hans-Joachim; Willner, Arne P. (2006). "2. Metamorphic and plutonic basement complexes". In Moreno, Teresa; Gibbons, Wes (eds.). Geology of Chile. Geological Society of London. pp. 5–19. ISBN   9781862392199.
  8. 1 2 Chernicoff, Carlos J.; Zappettini, Eduardo O.; Santos, João O.S.; Allchurch, Shelley; McNaughton, Neal J. (2010). "The southern segment of the Famatinian magmatic arc, La Pampa Province, Argentina". Gondwana Research . 17 (4): 662–675. Bibcode:2010GondR..17..662C. doi:10.1016/j.gr.2009.10.008.
  9. Chew, David M.; Pedemonte, Giovanni; Corbett, Eoghan (2016). "Proto-Andean evolution of the Eastern Cordillera of Peru". Gondwana Research . 35: 59–78. Bibcode:2016GondR..35...59C. doi:10.1016/j.gr.2016.03.016.
  10. Bahlburg, Heinrich; Vervoort, Jeffrey D.; DeFrane, S. Andrew; Carlotto, Victor; Reimann, Cornelia; Cárdenas, José (2011). "The U-Pb and Hf isotope evidence of detrital zircons of the Ordovician Ollantaytambo Formation, southern Peru, and the Ordovician provenance and paleogeography of southern Peru and northern Bolivia". Journal of South American Earth Sciences . 32 (3): 196–209. Bibcode:2011JSAES..32..196B. doi:10.1016/j.jsames.2011.07.002.
  11. 1 2 3 Niemeyer Rubilar, Hans (2020). "Geoquímica de las rocas plutónicas del batolito cambro-ordovícico del Cordón de Lila y de la Sierra de Almeida, Región de Antofagasta, Chile". Andean Geology (in Spanish). 47 (3): 628–640. doi: 10.5027/andgeoV47n3-3305 .
  12. 1 2 Vujovich, Graciela I.; van Staal, Cees R.; Davis, William (2004). "Age Constraints on the Tectonic Evolution and Provenance of the Pie de Palo Complex, Cuyania Composite Terrane, and the Famatinian Orogeny in the Sierra de Pie de Palo, San Juan, Argentina" (PDF). Gondwana Research. Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. 7 (4): 1041–1056. Bibcode:2004GondR...7.1041V. doi:10.1016/s1342-937x(05)71083-2. ISSN   1342-937X. Archived from the original (PDF) on 26 September 2015. Retrieved 18 September 2015.
  13. 1 2 3 Dalla Salda, Luis H.; Dalziel, Ian W.D.; Cingolani, Carlos A.; Varela, Ricardo (1992). "Did the Taconic Appalachians continue into southern South America?". Geology . 20 (12): 1059–1062. Bibcode:1992Geo....20.1059D. doi:10.1130/0091-7613(1992)020<1059:DTTACI>2.3.CO;2 . Retrieved 18 September 2015.
  14. Dalla Salda, Luis H.; López de Luchi, Mónica.; Cingolani, Carlos A.; Varela, Ricardo (1998). "Laurentia-Gondwana collision: the origin of the Famatinian-Appalachian Orogenic Belt (a review)". In Pankhurst, R.J.; Rapela, C.W. (eds.). The Proto-Andean Margin of Gondwana. Vol. 142. Geological Society, London, Special Publications. pp. 219–234.
  15. 1 2 Bordonaro, Osvaldo (2016). "Trilobites laurénticos de la Formación La Laja (Cámbrico), Precordillera de San Juan, Argentina: un aporte biogeográfico al modelo alóctono de Precordillera". Revista de la Asociación Geológica Argentina (in Spanish). 73 (4).