Glomus cell

Last updated
The carotid body is not labelled but is located within the wall of the internal carotid artery near the bifurcation of the common carotid artery. Glomus type I cells are the chemoreceptor cells found in the carotid body. Gray's Anatomy with markup showing carotid artery bifurcation.png
The carotid body is not labelled but is located within the wall of the internal carotid artery near the bifurcation of the common carotid artery. Glomus type I cells are the chemoreceptor cells found in the carotid body.

Glomus cells are the cell type mainly located in the carotid bodies and aortic bodies. Glomus type I cells are peripheral chemoreceptors which sense the oxygen, carbon dioxide and pH levels of the blood. When there is a decrease in the blood's pH, a decrease in oxygen (pO2), or an increase in carbon dioxide (pCO2), the carotid bodies and the aortic bodies signal the dorsal respiratory group in the medulla oblongata to increase the volume and rate of breathing. [1] The glomus cells have a high metabolic rate and good blood perfusion and thus are sensitive to changes in arterial blood gas tension. Glomus type II cells are sustentacular cells having a similar supportive function to glial cells. [2] [3] [4]

Contents

Structure

The signalling within the chemoreceptors is thought to be mediated by the release of neurotransmitters by the glomus cells, including dopamine, noradrenaline, acetylcholine, substance P, vasoactive intestinal peptide and enkephalins. [5] Vasopressin has been found to inhibit the response of glomus cells to hypoxia, presumably because the usual response to hypoxia is vasodilation, which in case of hypovolemia should be avoided. [6] Furthermore, glomus cells are highly responsive to angiotensin II through AT1 receptors, providing information about the body's fluid and electrolyte status. [7]

Function

Glomus type I cells are chemoreceptors which monitor arterial blood for the partial pressure of oxygen (pO2), partial pressure of carbon dioxide (pCO2) and pH.

Glomus type I cells are secretory sensory neurons that release neurotransmitters in response to hypoxemia (low pO2), hypercapnia (high pCO2) or acidosis (low pH). Signals are transmitted to the afferent nerve fibers of the sinus nerve and may include dopamine, acetylcholine, and adenosine. [8] This information is sent to the respiratory center and helps the brain to regulate breathing.

Innervation

The glomus type I cells of the carotid body are innervated by the sensory neurons found in the inferior ganglion of the glossopharyngeal nerve. [9] The carotid sinus nerve is the branch of the glossopharyngeal nerve which innervates them. Alternatively, the glomus type I cells of the aortic body are innervated by sensory neurons found in the inferior ganglion of the vagus nerve. Centrally the axons of neurons which innervate glomus type I cells synapse in the caudal portion of the solitary nucleus in the medulla. Glomus type II cells are not innervated.

Development

Development of the nervous system. The glomus type I cells of the carotid body are derived from the neural crest and can be seen in green. Neural Crest.png
Development of the nervous system. The glomus type I cells of the carotid body are derived from the neural crest and can be seen in green.

Glomus type I cells are embryonically derived from the neural crest. [2] In the carotid body the respiratory chemoreceptors need a period of time postnatally in order to reach functional maturity. [10] This maturation period is known as resetting. [11] At birth the chemorecptors express a low sensitivity for lack of oxygen but this increases over the first few days or weeks of life. The mechanisms underlying the postnatal maturity of chemotransduction are obscure. [8]

Clinical significance

Clusters of glomus cells, of which the carotid bodies and aortic bodies are the most important, are called non-chromaffin or parasympathetic paraganglia. They are also present along the vagus nerve, in the inner ears, in the lungs, and at other sites. Neoplasms of glomus cells are known as paraganglioma, among other names, they are generally non-malignant. [12]

Research

The autotransplantation of glomus cells of the carotid body into the striatum – a nucleus in the forebrain, has been investigated as a cell-based therapy for people with Parkinson's disease. [13]

See also

List of distinct cell types in the adult human body

Related Research Articles

<span class="mw-page-title-main">Hypoxia (medicine)</span> Medical condition of lack of oxygen in the tissues

Hypoxia is a condition in which the body or a region of the body is deprived of adequate oxygen supply at the tissue level. Hypoxia may be classified as either generalized, affecting the whole body, or local, affecting a region of the body. Although hypoxia is often a pathological condition, variations in arterial oxygen concentrations can be part of the normal physiology, for example, during strenuous physical exercise.

<span class="mw-page-title-main">Autonomic nervous system</span> Division of the nervous system supplying internal organs, smooth muscle and glands

The autonomic nervous system (ANS), sometimes called the visceral nervous system and formerly the vegetative nervous system, is a division of the nervous system that operates internal organs, smooth muscle and glands. The autonomic nervous system is a control system that acts largely unconsciously and regulates bodily functions, such as the heart rate, its force of contraction, digestion, respiratory rate, pupillary response, urination, and sexual arousal. The fight-or-flight response, also known as the acute stress response, is set into action by the autonomic nervous system.

<span class="mw-page-title-main">Glossopharyngeal nerve</span> Cranial nerve IX, for the tongue and pharynx

The glossopharyngeal nerve, also known as the ninth cranial nerve, cranial nerve IX, or simply CN IX, is a cranial nerve that exits the brainstem from the sides of the upper medulla, just anterior to the vagus nerve. Being a mixed nerve (sensorimotor), it carries afferent sensory and efferent motor information. The motor division of the glossopharyngeal nerve is derived from the basal plate of the embryonic medulla oblongata, whereas the sensory division originates from the cranial neural crest.

<span class="mw-page-title-main">Diving reflex</span> The physiological responses to immersion of air-breathing vertebrates

The diving reflex, also known as the diving response and mammalian diving reflex, is a set of physiological responses to immersion that overrides the basic homeostatic reflexes, and is found in all air-breathing vertebrates studied to date. It optimizes respiration by preferentially distributing oxygen stores to the heart and brain, enabling submersion for an extended time.

A chemoreceptor, also known as chemosensor, is a specialized sensory receptor which transduces a chemical substance to generate a biological signal. This signal may be in the form of an action potential, if the chemoreceptor is a neuron, or in the form of a neurotransmitter that can activate a nerve fiber if the chemoreceptor is a specialized cell, such as taste receptors, or an internal peripheral chemoreceptor, such as the carotid bodies. In physiology, a chemoreceptor detects changes in the normal environment, such as an increase in blood levels of carbon dioxide (hypercapnia) or a decrease in blood levels of oxygen (hypoxia), and transmits that information to the central nervous system which engages body responses to restore homeostasis.

The control of ventilation is the physiological mechanisms involved in the control of breathing, which is the movement of air into and out of the lungs. Ventilation facilitates respiration. Respiration refers to the utilization of oxygen and balancing of carbon dioxide by the body as a whole, or by individual cells in cellular respiration.

<span class="mw-page-title-main">Carotid body</span> Cell cluster within carotid arteries which monitors blood content

The carotid body is a small cluster of peripheral chemoreceptor cells and supporting sustentacular cells situated at the bifurcation of each common carotid artery in its tunica externa.

<span class="mw-page-title-main">Solitary nucleus</span> Sensory nuclei in medulla oblongata

The solitary nucleus(SN) (nucleus of the solitary tract, nucleus solitarius, or nucleus tractus solitarii) is a series of neurons whose cell bodies form a roughly vertical column of grey matter in the medulla oblongata of the brainstem. Their axons form the bulk of the enclosed solitary tract. The solitary nucleus can be divided into different parts including dorsomedial, dorsolateral, and ventrolateral subnuclei.

<span class="mw-page-title-main">Paraganglioma</span> Rare neuroendocrine tumour

A paraganglioma is a rare neuroendocrine neoplasm that may develop at various body sites. When the same type of tumor is found in the adrenal gland, they are referred to as a pheochromocytoma. They are rare tumors, with an overall estimated incidence of 1 in 300,000. There is no test that determines benign from malignant tumors; long-term follow-up is therefore recommended for all individuals with paraganglioma.

<span class="mw-page-title-main">Aortic body</span> Cell cluster in the aorta which monitors blood content

The aortic bodies are one of several small clusters of peripheral chemoreceptors located along the aortic arch. They are important in measuring partial pressures of oxygen and carbon dioxide in the blood, and blood pH.

<span class="mw-page-title-main">Inferior ganglion of glossopharyngeal nerve</span>

The inferior ganglion of the glossopharyngeal nerve is a sensory ganglion. It is larger than and inferior to the superior ganglion of the glossopharyngeal nerve. It is located within the jugular foramen.

<span class="mw-page-title-main">Paraganglion</span>

A paraganglion is a group of non-neuronal cells derived of the neural crest. They are named for being generally in close proximity to sympathetic ganglia. They are essentially of two types: (1) chromaffin or sympathetic paraganglia made of chromaffin cells and (2) nonchromaffin or parasympathetic paraganglia made of glomus cells. They are neuroendocrine cells, the former with primary endocrine functions and the latter with primary chemoreceptor functions.

Peripheral chemoreceptors are so named because they are sensory extensions of the peripheral nervous system into blood vessels where they detect changes in chemical concentrations. As transducers of patterns of variability in the surrounding environment, carotid and aortic bodies count as chemosensors in a similar way as taste buds and photoreceptors. However, because carotid and aortic bodies detect variation within the body's internal organs, they are considered interoceptors. Taste buds, olfactory bulbs, photoreceptors, and other receptors associated with the five traditional sensory modalities, by contrast, are exteroceptors in that they respond to stimuli outside the body. The body also contains proprioceptors, which respond to the amount of stretch within the organ, usually muscle, that they occupy.

Central chemoreceptors of the central nervous system, located on the ventrolateral medullary surface in the vicinity of the exit of the 9th and 10th cranial nerves, are sensitive to the pH of their environment.

The preBötzinger complex, often abbreviated as preBötC, is a functionally and anatomically specialized site in the ventral-lateral region of the lower medulla oblongata. The preBötC is part of the ventral respiratory group of respiratory related interneurons. Its foremost function is to generate the inspiratory breathing rhythm in mammals. In addition, the preBötC is widely and paucisynaptically connected to higher brain centers that regulate arousal and excitability more generally such that respiratory brain function is intimately connected with many other rhythmic and cognitive functions of the brain and central nervous system. Further, the preBötC receives mechanical sensory information from the airways that encode lung volume as well as pH, oxygen, and carbon dioxide content of circulating blood and the cerebrospinal fluid.

<span class="mw-page-title-main">Respiratory center</span> Brain region controlling respiration

The respiratory center is located in the medulla oblongata and pons, in the brainstem. The respiratory center is made up of three major respiratory groups of neurons, two in the medulla and one in the pons. In the medulla they are the dorsal respiratory group, and the ventral respiratory group. In the pons, the pontine respiratory group includes two areas known as the pneumotaxic center and the apneustic center.

Hypoxic ventilatory response (HVR) is the increase in ventilation induced by hypoxia that allows the body to take in and transport lower concentrations of oxygen at higher rates. It is initially elevated in lowlanders who travel to high altitude, but reduces significantly over time as people acclimatize. In biological anthropology, HVR also refers to human adaptation to environmental stresses resulting from high altitude.

Fish are exposed to large oxygen fluctuations in their aquatic environment since the inherent properties of water can result in marked spatial and temporal differences in the concentration of oxygen. Fish respond to hypoxia with varied behavioral, physiological, and cellular responses to maintain homeostasis and organism function in an oxygen-depleted environment. The biggest challenge fish face when exposed to low oxygen conditions is maintaining metabolic energy balance, as 95% of the oxygen consumed by fish is used for ATP production releasing the chemical energy of nutrients through the mitochondrial electron transport chain. Therefore, hypoxia survival requires a coordinated response to secure more oxygen from the depleted environment and counteract the metabolic consequences of decreased ATP production at the mitochondria.

<span class="mw-page-title-main">Intermittent hypoxia</span>

Intermittent hypoxia (also known as episodic hypoxia) is an intervention in which a person or animal undergoes alternating periods of normoxia and hypoxia. Normoxia is defined as exposure to oxygen levels normally found in Earth's atmosphere (~21% O2) and hypoxia as any oxygen levels lower than those of normoxia. Normally, exposure to hypoxia is negatively associated to physiological changes to the body, such as altitude sickness. However, when used in moderation, intermittent hypoxia may be used clinically as a means to alleviate various pathological conditions.

<span class="mw-page-title-main">Cell-based therapies for Parkinson's disease</span> Treatment method for Parkinsons disease

Cell-based therapies for Parkinson's disease include various investigational procedures which transplant specific populations of cells into the brains of people with Parkinson's disease. The investigation of cell transplantation therapies followed the discovery that the death of dopaminergic neurons in the substantia nigra pars compacta resulted in the motor symptoms of the disease. Thus, cell transplantation has focused on various dopamine producing cells throughout the body.

References

  1. Lahiri S, Semenza G, Prabhakar NR, eds. (2003). Oxygen sensing : responses and adaptation to Hypoxia. New York: Dekker. pp. 200, 232. ISBN   978-0824709600.
  2. 1 2 Pearse AG, Polak JM, Rost FW, Fontaine J, Le Lièvre C, Le Douarin N (1973). "Demonstration of the neural crest origin of type I (APUD) cells in the avian carotid body, using a cytochemical marker system". Histochemie. 34 (3): 191–203. doi:10.1007/bf00303435. PMID   4693636. S2CID   25437552.
  3. Lawson, W (January 1980). "The neuroendocrine nature of the glomus cells: an experimental, ultrastructural, and histochemical tissue culture study". The Laryngoscope. 90 (1): 120–44. doi:10.1288/00005537-198001000-00014. PMID   6243386. S2CID   13149248.
  4. Eyzaguirre, C; Fidone, SJ (November 1980). "Transduction mechanisms in carotid body: glomus cells, putative neurotransmitters, and nerve endings". The American Journal of Physiology. 239 (5): C135-52. doi:10.1152/ajpcell.1980.239.5.C135. PMID   6108075.
  5. Pardal, R.; Ludewig, U.; Garcia-Hirschfeld, J.; Lopez-Barneo, J. (11 February 2000). "Secretory responses of intact glomus cells in thin slices of rat carotid body to hypoxia and tetraethylammonium" (PDF). Proceedings of the National Academy of Sciences. 97 (5): 2361–2366. Bibcode:2000PNAS...97.2361P. doi: 10.1073/pnas.030522297 . PMC   15806 . PMID   10681419.
  6. Wang, ZZ; He, L; Stensaas, LJ; Dinger, BG; Fidone, SJ (February 1991). "Localization and in vitro actions of atrial natriuretic peptide in the cat carotid body". Journal of Applied Physiology. 70 (2): 942–6. doi:10.1152/jappl.1991.70.2.942. PMID   1827111.
  7. Allen, A. M. (1 August 1998). "Angiotensin AT1 receptor-mediated excitation of rat carotid body chemoreceptor afferent activity". The Journal of Physiology. 510 (3): 773–781. doi:10.1111/j.1469-7793.1998.773bj.x. PMC   2231066 . PMID   9660892.
  8. 1 2 Carroll, JL; Kim, I (15 November 2005). "Postnatal development of carotid body glomus cell O2 sensitivity". Respiratory Physiology & Neurobiology. 149 (1–3): 201–15. doi:10.1016/j.resp.2005.04.009. PMID   15886071. S2CID   25277654.
  9. Gonzalez, Constancio; Conde, Silvia V.; Gallego-Martín, Teresa; Olea, Elena; Gonzalez-Obeso, Elvira; Ramirez, Maria; Yubero, Sara; Agapito, Maria T.; Gomez-Niñno, Angela; Obeso, Ana; Rigual, Ricardo (2014). "Fernando de Castro and the discovery of the arterial chemoreceptors". Frontiers in Neuroanatomy. 8: 25. doi: 10.3389/fnana.2014.00025 . ISSN   1662-5129. PMC   4026738 . PMID   24860435.
  10. Hempleman, SC; Pilarski, JQ (31 August 2011). "Prenatal development of respiratory chemoreceptors in endothermic vertebrates". Respiratory Physiology & Neurobiology. 178 (1): 156–62. doi:10.1016/j.resp.2011.04.027. PMC   3146631 . PMID   21569865.
  11. Carroll, JL; Kim, I (1 January 2013). "Carotid chemoreceptor "resetting" revisited". Respiratory Physiology & Neurobiology. 185 (1): 30–43. doi:10.1016/j.resp.2012.09.002. PMC   3587794 . PMID   22982216.
  12. Anne Marie McNicol (2010). "Chapter 12: Adrenal medulla and paraganglia". Endocrine Pathology: Differential Diagnosis and Molecular Advance (Springer ed.). p. 281.
  13. Mínguez-Castellanos, Adolfo; Escamilla-Sevilla, Francisco; Hotton, Gary R.; Toledo-Aral, Juan J.; Ortega-Moreno, Angel; Méndez-Ferrer, Simón; Martín-Linares, José M.; Katati, Majed J.; Mir, Pablo (August 2007). "Carotid body autotransplantation in Parkinson disease: a clinical and positron emission tomography study". Journal of Neurology, Neurosurgery, and Psychiatry. 78 (8): 825–831. doi:10.1136/jnnp.2006.106021. ISSN   1468-330X. PMC   2117739 . PMID   17220289.