Ianthasaurus

Last updated

Ianthasaurus
Temporal range: Late Carboniferous,
~304  Ma
O
S
D
C
P
T
J
K
Pg
N
Ianthasaurus223DB.jpg
Life restoration
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Chordata
Clade: Synapsida
Family: Edaphosauridae
Genus: Ianthasaurus
Reisz and Berman, 1986
Type species
Ianthasaurus hardestii
Reisz & Berman, 1986

Ianthasaurus is an extinct genus of small edaphosaurids from the Late Carboniferous.

Contents

Description

Size comparison Ianthasaurus Scale.svg
Size comparison

It is one of the smallest edaphosaurids known, with an 8 cm (3.1 in) skull and a total body length of 75 cm (30 in). [1] Ianthasaurus lacks many of the spectacular specializations seen in Edaphosaurus . For example, the marginal dentition of Ianthasaurus is similar to that of insectivorous reptiles, with slender conical teeth which are slightly recurved at the tips, and there is a slight development of a caniniform region. The palatal and mandibular dentition is unspecialized, and there are no batteries of teeth for crushing of plant materials. Also unlike Edaphosaurus , Ianthasaurus was lightly built and was probably quite agile. The skull was similar to that of Haptodus , a sphenacodontid, though they were distantly related.

Discovery

It was named by Robert R. Reisz and David Berman in 1986. [2] [3] It was discovered by them in the Upper Pennsylvanian Rock Lake Shale near Garnett, Kansas. [2]

See also

Related Research Articles

<i>Edaphosaurus</i> Extinct genus of synapsids

Edaphosaurus is a genus of extinct edaphosaurid synapsids that lived in what is now North America and Europe around 303.4 to 272.5 million years ago, during the Late Carboniferous to Early Permian. American paleontologist Edward Drinker Cope first described Edaphosaurus in 1882, naming it for the "dental pavement" on both the upper and lower jaws, from the Greek edaphos έδαφος and σαῦρος ("lizard").

<span class="mw-page-title-main">Sphenacodontia</span> Clade of synapsids

Sphenacodontia is a stem-based clade of derived synapsids. It was defined by Amson and Laurin (2011) as "the largest clade that includes Haptodus baylei, Haptodus garnettensis and Sphenacodon ferox, but not Edaphosaurus pogonias". They first appear during the Late Pennsylvanian epoch. From the end of the Carboniferous to the end of the Permian, most of them remained large, with only some secondarily becoming small in size.

<span class="mw-page-title-main">Eupelycosauria</span> Clade of synapsids

Eupelycosauria is a large clade of animals characterized by the unique shape of their skull, encompassing all mammals and their closest extinct relatives. They first appeared 308 million years ago during the Early Pennsylvanian epoch, with the fossils of Echinerpeton and perhaps an even earlier genus, Protoclepsydrops, representing just one of the many stages in the evolution of mammals, in contrast to their earlier amniote ancestors.

<i>Petrolacosaurus</i> Genus of tetrapods

Petrolacosaurus is an extinct genus of diapsid reptile from the late Carboniferous period. It was a small, 40-centimetre (16 in) long reptile, and one of the earliest known reptile with two temporal fenestrae. This means that it was at the base of Diapsida, the largest and most successful radiation of reptiles that would eventually include all modern reptile groups, as well as dinosaurs and other famous extinct reptiles such as plesiosaurs, ichthyosaurs, and pterosaurs. However, Petrolacosaurus itself was part of Araeoscelida, a short-lived early branch of the diapsid family tree which went extinct in the mid-Permian.

<i>Mycterosaurus</i> Extinct genus of tetrapods

Mycterosaurus is an extinct genus of amniotes belonging to the family Varanopidae. It is classified in the varanopid subfamily Mycterosaurinae. Mycterosaurus is the most primitive member of its family, existing from 290.1 to 272.5 MYA, known to Texas and Oklahoma. It lacks some features that its advanced relatives have.

<i>Platyhystrix</i> Genus of amphibians (fossil)

Platyhystrix is an extinct temnospondyl amphibian with a distinctive sail along its back, similar to the unrelated synapsids, Dimetrodon and Edaphosaurus. It lived during the boundary between the latest Carboniferous and earliest Permian periods throughout what is now known as the Four Corners, Texas, and Kansas about 300 million years ago.

<i>Eothyris</i> Extinct genus of synapsids

Eothyris is a genus of extinct synapsid in the family Eothyrididae from the early Permian. It was a carnivorous insectivorous animal, closely related to Oedaleops. Only the skull of Eothyris, first described in 1937, is known. It had a 6-centimetre-long (2.4-inch) skull, and its total estimated length was 30 centimetres. Eothyris is one of the most primitive synapsids known and is probably very similar to the common ancestor of all synapsids in many respects. The only known specimen of Eothyris was collected from the Artinskian-lower.

<i>Archaeovenator</i> Extinct genus of tetrapods

Archaeovenator is an extinct genus of Late Carboniferous varanopid synapsids known from Greenwood County, Kansas of the United States. It was first named by Robert R. Reisz and David W. Dilkes in 2003 and the type species is Archaeovenator hamiltonensis. Archaeovenator hamiltonensis is known from the holotype KUVP 12483, a three-dimensionally preserved, nearly complete and articulated skeleton, including the skull, with limbs and girdles slightly separated from postcranial skeleton. It was collected in the Hamilton Quarry, from the Calhouns Shale Formation of the Shawnee Group, dating to the Virgilian stage of the Late Pennsylvanian Series, about 300 million years ago. The generic name is derived from the Latin Archaeo and venator, meaning "ancient hunter". The specific name is named after its finding place Hamilton Quarry. Archaeovenator is one of the oldest known varanopid, though Dendromaia is known from older rocks.

<i>Limnoscelis</i> Genus of diadectomorphs

Limnoscelis was a genus of large diadectomorph tetrapods from the Late Carboniferous to early Permian of western North America. It includes two species: the type species Limnoscelis paludis from New Mexico, and Limnoscelis dynatis from Colorado, both of which are thought to have lived concurrently. No specimens of Limnoscelis are known from outside of North America. Limnoscelis was carnivorous, and likely semiaquatic, though it may have spent a significant portion of its life on land. Limnoscelis had a combination of derived amphibian and primitive reptilian features, and its placement relative to Amniota has significant implications regarding the origins of the first amniotes.

<span class="mw-page-title-main">Trematopidae</span> Extinct family of temnospondyls

Trematopidae is a family of dissorophoid temnospondyls spanning the late Carboniferous to the early Permian. Together with Dissorophidae, the family forms Olsoniformes, a clade comprising the medium-large terrestrial dissorophoids. Trematopids are known from numerous localities in North America, primarily in New Mexico, Oklahoma, and Texas, and from the Bromacker quarry in Germany.

<i>Neopteroplax</i> Extinct genus of tetrapodomorphs

Neopteroplax is an extinct genus of eogyrinid embolomere closely related to European genera such as Eogyrinus and Pteroplax. Members of this genus were among the largest embolomeres in North America. Neopteroplax is primarily known from a large skull found in Ohio, although fragmentary embolomere fossils from Texas and New Mexico have also been tentatively referred to the genus. Despite its similarities to specific European embolomeres, it can be distinguished from them due to a small number of skull and jaw features, most notably a lower surangular at the upper rear portion of the lower jaw.

Actiobates is an extinct genus of trematopid temnospondyl that lived during the Late Carboniferous. It is known from the Garnett Quarry in Kansas.

<i>Echinerpeton</i> Extinct genus of synapsids

Echinerpeton is an extinct genus of synapsid, including the single species Echinerpeton intermedium from the Late Carboniferous of Nova Scotia, Canada. The name means 'spiny lizard' (Greek). Along with its contemporary Archaeothyris, Echinerpeton is the oldest known synapsid, having lived around 308 million years ago. It is known from six small, fragmentary fossils, which were found in an outcrop of the Morien Group near the town of Florence. The most complete specimen preserves articulated vertebrae with high neural spines, indicating that Echinerpeton was a sail-backed synapsid like the better known Dimetrodon, Sphenacodon, and Edaphosaurus. However, the relationship of Echinerpeton to these other forms is unclear, and its phylogenetic placement among basal synapsids remains uncertain.

<i>Xyrospondylus</i> Extinct genus of synapsids

Xyrospondylus is an extinct genus of non-mammalian synapsids belonging to the Edaphosauridae. The type species, X. ecordi, was named in 1982; it was originally named as a species of Edaphosaurus in 1957.

<i>Ianthodon</i> Extinct genus of synapsids

Ianthodon is an extinct genus of basal haptodontiform synapsids from the Late Carboniferous about 304 million years ago. The taxon was discovered and named by Kissel & Reisz in 2004. The only species in the taxon, Ianthodon schultzei, was found by separating it from a block that also contained the remains of Petrolacosaurus and Haptodus. The evolutionary significance of the taxon wasn't realized until a publication in 2015. The fossil of this organism was discovered in Garnett, Kansas.

<i>Fedexia</i> Extinct genus of amphibians

Fedexia is an extinct genus of carnivorous temnospondyl within the family Trematopidae. It lived 300 million years ago during the late Carboniferous period. It is estimated to have been 2 feet (0.61 m) long, and likely resembled a salamander. Fedexia is known from a single skull found in Moon Township, Pennsylvania. It is named after the shipping service FedEx, which owned the land where the holotype specimen was first found.

<i>Euconcordia</i> Extinct genus of reptiles

Euconcordia is an extinct genus of Late Carboniferous captorhinid known from Greenwood County, Kansas of the United States.

<i>Gordodon</i> Extinct genus of edaphosaurid synapsids

Gordodon is an extinct genus of non-mammalian synapsid that lived during the Early Permian of what is now Otero County, New Mexico. It was a member of the herbivorous sail-backed family Edaphosauridae and contains only a single species, the type species G. kraineri. Gordodon is unusual among early synapsids for its teeth, which were arranged similarly to those of modern mammals and unlike the simple, uniform lizard-like teeth of other early herbivorous synapsids. Gordodon had large incisor-like teeth at the front, followed by a prominent gap between them and a short row of peg-like teeth at the back. Gordodon was also relatively long-necked for an early synapsid, with elongated and gracile vertebrae in its neck and back. Like other edaphosaurids, Gordodon had a tall sail on its back made from the bony neural spines of its vertebrae. The spines also had bony knobs on them, a common trait of edaphosaurids, but the knobs of Gordodon are also unique for being more slender, thorn-like and randomly arranged along the spines. It is estimated to have been rather small at 1 m in length excluding the tail and 34 kg (75 lb) in weight.

<i>Kenomagnathus</i> Extinct genus of synapsids

Kenomagnathus is a genus of synapsid belonging to the Sphenacodontia, which lived during the Pennsylvanian subperiod of the Carboniferous in what is now Garnett, Kansas, United States. It contains one species, Kenomagnathus scottae, based on a specimen consisting of the maxilla and lacrimal bones of the skull, which was catalogued as ROM 43608 and originally classified as belonging to "Haptodus" garnettensis. Frederik Spindler named it as a new genus in 2020.

References

  1. T.S. Kemp (2005) The origin and evolution of mammals p.24.
  2. 1 2 Robert R. Reisz and David S. Berman (1986). "Ianthasaurus hardestii n. sp., a primitive edaphosaur (Reptilia, Pelycosauria) from the Upper Pennsylvanian Rock Lake Shale near Garnett, Kansas". Canadian Journal of Earth Sciences. 23 (1): 77–91. Bibcode:1986CaJES..23...77R. doi:10.1139/e86-008.
  3. "Ianthasaurus". Paleobiology Database. Archived from the original on October 2, 2013. Retrieved December 11, 2007.