Ennatosaurus

Last updated

Ennatosaurus
Temporal range: 270–265  Ma
O
S
D
C
P
T
J
K
Pg
N
Ennatosaurus BW.jpg
Scientific classification Red Pencil Icon.png
Kingdom: Animalia
Phylum: Chordata
Clade: Synapsida
Clade: Caseasauria
Family: Caseidae
Genus: Ennatosaurus
Efremov, 1956
Type species
Ennatosaurus tecton
Efremov, 1956

Ennatosaurus is an extinct genus of caseid synapsid that lived during the Middle Permian (late Roadian - early Wordian) in northern European Russia. [1] The genus is only represented by its type species, Ennatosaurus tecton, which was named in 1956 by Ivan Antonovich Efremov. [2] The species is known from at least six skulls associated with their lower jaws (two of them preserved with the hyoid apparatus), as well as from the postcranial bones of several juvenile individuals. [3] [4] [5] Ennatosaurus has the typical caseid skull with a short snout tilted forward and very large external nares. However, it differs from other derived caseids by its postcranial skeleton with smaller proportions compared to the size of the skull. [3] [5] As with other advanced caseids, the teeth of Ennatosaurus were well suited for slicing and cutting vegetation. [3] The presence of a highly developed hyoid apparatus indicates the presence of a massive and mobile tongue, which had to work in collaboration with the palatal teeth during swallowing. [3] [6] With a late Roadian - early Wordian age, Ennatosaurus is one of the last known caseids [1] (with Lalieudorhynchus from southern France).

Contents

Etymology

Ennatosaurus tecton means "ninth carpenter lizard". The strangeness of the name of this synapsid is related to its very unusual origin since the genus and species names correspond to the translation into Greek of the meaning of the Russian names of the discoverers of the first fossils of this animal. The genus name is dedicated to Tatyana A. Devyataya (the feminine form of Devyatyi whose name means ‘ninth’ = "ennatos" in Greek) and of "saurus" meaning lizard. The species honors Mikhail Alekseevich Plotnikov (after the Russian plotnik, meaning "carpenter" = "tecton" in Greek). [7]

Description

Skull of Ennatosaurus tecton (holotype PIN 1580/17) in left dorsolateral view. Ennatosaurus tecton holotype skull retouched.jpg
Skull of Ennatosaurus tecton (holotype PIN 1580/17) in left dorsolateral view.

Ennatosaurus is known by several adult skulls (PIN 1580/14, 17 (holotype), 122, 4543/1), as well as by a juvenile skull (PIN 1580/24) associated with many postcranial elements from several individuals. [3] [4] All these elements allowed the reconstruction of a composite skeleton. Unlike all other derived caseids that have a tiny skull relative to the body size, Ennatosaurus is peculiar by the small size of its postcranial skeleton compared to that of its skull. However, almost all of the postcranial material in Ennatosaurus belongs to juvenile individuals, and the unusual proportions of this composite skeleton could be explained by the mounting of an adult skull on a juvenile skeleton. However, the existence of some bones of subadult and adult individuals suggests that Ennatosaurus did indeed have a proportionally smaller body than that of other derived caseids. [3] [5] The largest adult skull of Ennatosaurus (the holotype PIN 1580/17) is approximately 17 cm long, a size similar to the skull of Cotylorhynchus romeri , while the few adult bones of Ennatosaurus are half the size of the corresponding adult elements in C. romeri. [3]

As in other caseids, Ennatosaurus has a very short skull with a snout sharply sloping forward and very large external nares. Ennatosaurus is distinguished, however, by its proportionally longer facial region than in Casea and Euromycter . The dorsal ramus of each premaxilla contributes to a narrow intranarial bar, narrower than that of Euromycter, but of width similar to that of Cotylorhynchus romeri. The skull roof is distinguished by the very large contribution of the frontal to the dorsal margin of the orbit. It occupies about 50% of the length of the latter while in Euromycter and C. romeri the frontal represents less than 10% of the margin of the orbit. The jugal is very characteristic in having a thick and very elongated anterior ramus creating an area of extended contact with the lacrimal. In other caseids, the anterior ramus is very thin and ends in narrow vertical contact with the lacrimal. Ennatosaurus also differs from all other caseid in its temporal fenestrae significantly larger than the nostrils and orbits, its palate with a narrower parasphenoid, and its upper dentition more reduced in number. In Ennatosaurus, each premaxilla and maxilla only have two and eight teeth respectively against 4 and 11 teeth respectively in Euromycter and 3 and 15 or 16 teeth in C. romeri. [3] [4] The premaxillary teeth are conical in shape, the following teeth are spatulate with five to seven cuspules arranged longitudinally. [4]

Composite skeleton of Ennatosaurus tecton in Moscow Paleontological Museum. Ennatozavr2021.jpg
Composite skeleton of Ennatosaurus tecton in Moscow Paleontological Museum.

The postcranial skeleton also shows many original characters. The vertebral centra of all regions of the body are characterized by the presence of two well-developed ventrolateral pits, deep and elongated anteroposteriorly. The neural spines of the vertebrae show a diamond-shaped section along its entire length, a condition similar to that observed in Ruthenosaurus . The vertebrae of the "lumbar region" are characterized by the absence of fused or co-ossified ribs (a characteristic to be taken with caution given the juvenile condition of the specimens). The humerus has a robust ectepicondyle and a not completely closed ectepicondylar foramen. A deep and well marked fossa is present immediately behind the acetabular buttress of the ilium. The femur is very characteristic, its proximal articular surface is much wider dorsoventrally than anteroposteriorly and an elevated and robust bony crest extends from the narrowest part of the shaft to the top of the posterior condyle with which it merges to form a single support structure. The intertrochanteric fossa is much more developed mediolaterally than anteroposteriorly in relation with the conformation of the proximal articular surface. The tibia is distinguished by its flattened shaft with a subelliptic and non-circular cross section, as is the case in most caseids which have not undergone diagenetic deformation. The manus is not fully known and the preserved elements indicate a phalangeal formula 2-2-3-?-2. It was probably similar to that of the foot, more complete, whose formula is 2-2-3-3-2. The toes are short and terminated by small unguals similar to blunt claws. [3] [5]

Geographic and stratigraphic range

All the fossils of Ennatosaurus tecton are from Arkhangelsk Oblast in northern European Russia. The holotype and the majority of the referred specimens were discovered in 1955 in the Nijneoustinskaia Formation (Karpogorskaia Member), on the banks of the Pinega River, and come from the locality of Moroznitsa near the town of Karpoga in the Pinezhsky District. [3] [8] [4] A nearly complete skull with lower jaw, a fragment of the cheek region of a second skull, and an incomplete dentary were also discovered in the Krasnoshelskaia Formation, near the village of Nisogora (Leshukonsky District), on the banks of the Mezen River, more than 100 km east of the first site. [8] [4] Ennatosaurus has long been known as one of the last caseids with a middle Permian age. But a more precise age was difficult to assess because Ennatosaurus is the only known vertebrate at the Moroznitsa locality. [9] [3] A Capitanian age was sometimes mentioned. [4] However, the Nisogora locality, which has yielded Ennatosaurus remains, contains a more diverse fauna containing the parareptiles Nyctiphruretus acudens , Macroleter poezicus and Lanthaniscus efremovi , the Varanopidae Mesenosaurus romeri , and the juvenile therapsid of uncertain affinity Niaftasuchus zekkeli . [10] All these species (except Ennatosaurus) are also known in at least eight other localities of the Arkhangelsk Oblast which have yielded additionally the parareptiles Lanthanolania ivachnenkoi , Bashkyroleter mesensis and Nycteroleter ineptus , the Varanopidae Pyozia mesensis , and several basal therapsids : the Nikkasauridae Nikkasaurus tatarinovi , Reiszia gubini and R. tippula, the biarmosuchian Alrausuchus tagax , [10] and a yet undescribed basal anteosaurid dinocephalian. [11] [12] This fauna constitutes the Mezen assemblage which is more or less contemporary with the Ochyor (or Ocher) assemblage. Magnetostratigraphic data suggests that these two faunal assemblages are late Roadian to early Wordian in age. [13] [1] Compared to the Ochyor assemblage largely dominated by therapids ( Estemmenosuchus , the anteosaur Archaeosyodon , Biarmosuchus , and the anomodont Otsheria ), the Mezen assemblage, characterized by the presence of pelycosaurs, the great diversity of small terrestrial parareptiles, and more primitive therapsids, seems more archaic. These two faunal assemblages were geographically separated from each other by a marine area. It is possible that the Mezen assemblage is a relict fauna which lived in the regions of marshy plains west of the Kazanian Sea, while the Ochyor fauna lived east of this sea, along the Paleo-Urals mountains. [1] [10]

In 2016, Mujal and colleagues attributed to cf. Ennatosaurus tecton, an incomplete posterior dorsal vertebra (including the dorsal half of the centrum and the base of the neural arch) found in deposits possibly dating from the Middle Permian of La Vansa i Fórnols in northern Spain (Province of Lleida). [14] This tentative determination was based on the presence of a small pit on the lateral surface of the centrum. However, Romano and colleagues have shown that the very small size and location of the pit of the Spanish vertebra does not correspond to the large elongated pits clearly visible in lateral and ventral views on all vertebrae of Ennatosaurus tecton [5] (as Olson had already figured in 1968 [3] ). The small pit of the Spanish vertebra probably represents a perforation for the blood vessels, and its owner currently remains unidentified. [5]

Phylogeny

In the first phylogenetic analysis of Caseidae published in 2008, Ennatosaurus was identified as the sister group of a clade containing Cotylorhynchus romeri and Angelosaurus dolani . The Wordian age of Ennatosaurus compared to the two American species dated to the Lower Permian indicates that the Russian species is the product of a ghost lineage of several million years. [4]

Below the first phylogenetic analysis of Caseidae published by Maddin et al. in 2008. [4]

  Caseasauria

  Eothyris

  Caseidae

  Oromycter dolesorum

  Casea broilii

  Casea rutena

 Ennatosaurus tecton

  Cotylorhynchus romeri

  Angelosaurus dolani

In 2015, Romano and Nicosia published the first cladistic study including almost all the Caseidae (with the exception of Alierasaurus ronchii of Sardinia, considered too fragmentary). In their most parsimonious analysis, Ennatosaurus is more closely related to the genus Angelosaurus . However, the close relationship between Angelosaurus dolani and Ennatosaurus tecton may be distorted by the extreme incompleteness of the material of the North American species. [15]

Below the most pasimonious phylogenetic analysis published by Romano & Nicosia in 2015. [15]

  Caseasauria

  Eothyris parkeyi

  Caseidae

  Oromycter dolesorum

  Casea broilii

  Euromycter rutenus

  Caseoides sanangeloensis

  “Casea” nicholsi

  Caseopsis agilis

  Cotylorhynchus bransoni

  Cotylorhynchus romeri

  Cotylorhynchus hancocki

  Ruthenosaurus russellorum

  Angelosaurus romeri

  Angelosaurus dolani

 Ennatosaurus tecton

Two other cladogams published in 2020 by Berman and colleagues recover Ennatosaurus as the sister xaxon of a clade containing the taxa Angelosaurus romeri, Alierasaurus ronchii, and the three species of Cotylorhynchus. [16]

Below are the two Caseidae cladograms published by Berman and colleagues in 2020. [16]

Caseidae

Eocasea martini

Martensius bromackerensis

Casea broilii

Oromycter dolesorum

Trichasaurus texensis

Casea nicholsi

Euromycter rutenus

Ennatosaurus tecton

Angelosaurus romeri

Alierasaurus ronchii

Cotylorhynchus romeri

Cotylorhynchus bransoni

Cotylorhynchus hancocki

Caseidae

Eocasea martini

Martensius bromackerensis

Casea broilii

Oromycter dolesorum

Trichasaurus texensis

Casea nicholsi

Euromycter rutenus

Ennatosaurus tecton

Angelosaurus romeri

Alierasaurus ronchii

Cotylorhynchus romeri

Cotylorhynchus bransoni

Cotylorhynchus hancocki

In the cladogram published by Werneburg and colleagues in 2022, Ennatosaurus occupies a similar position between Euromycter and all more derived caseids. [17]

Below is the cladogram published by Werneburg and colleagues in 2022. [17]

Caseidae

Martensius bromackerensis

Oromycter dolesorum

Casea

“Casea” nicholsi

Euromycter

Ennatosaurus

Angelosaurus dolani

“Angelosaurus” romeri

Ruthenosaurus

Caseopsis

Cotylorhynchus romeri

Alierasaurus

“Cotylorhynchus” bransoni

Lalieudorhynchus

“Cotylorhynchus” hancocki

Related Research Articles

<span class="mw-page-title-main">Dinocephalia</span> Extinct clade of stem-mammals

Dinocephalians are a clade of large-bodied early therapsids that flourished in the Early and Middle Permian between 279.5 and 260 million years ago (Ma), but became extinct during the Capitanian mass extinction event. Dinocephalians included herbivorous, carnivorous, and omnivorous forms. Many species had thickened skulls with many knobs and bony projections. Dinocephalians were the first non-mammalian therapsids to be scientifically described and their fossils are known from Russia, China, Brazil, South Africa, Zimbabwe, and Tanzania.

<span class="mw-page-title-main">Caseasauria</span> Extinct clade of synapsids

Caseasauria is one of the two main clades of early synapsids, the other being the Eupelycosauria. Caseasaurs are currently known only from the Late Carboniferous and the Permian, and include two superficially different families, the small insectivorous or carnivorous Eothyrididae, and the large, herbivorous Caseidae. These two groups share a number of specialised features associated with the morphology of the snout and external naris.

<span class="mw-page-title-main">Caseidae</span> Extinct family of synapsids

Caseidae are an extinct family of basal synapsids that lived from the Late Carboniferous to Middle Permian between about 300 and 265 million years ago. Fossils of these animals come from the south-central part of the United States, from various parts of Europe, and possibly from South Africa if the genus Eunotosaurus is indeed a caseid as some authors proposed in 2021. Caseids show great taxonomic and morphological diversity. The most basal taxa were small insectivorous and omnivorous forms that lived mainly in the Upper Carboniferous and Lower Permian, such as Eocasea, Callibrachion, and Martensius. This type of caseid persists until the middle Permian with Phreatophasma and may be Eunotosaurus. During the early Permian, the clade is mainly represented by many species that adopted a herbivorous diet. Some have evolved into gigantic forms that can reach 6–7 metres (20–23 ft) in length, such as Cotylorhynchus hancocki and Alierasaurus ronchii, making them the largest Permian synapsids. Caseids are considered important components of early terrestrial ecosystems in vertebrate history because the numerous herbivorous species in this family are among the first terrestrial tetrapods to occupy the role of primary consumer. The caseids experienced a significant evolutionary radiation at the end of the early Permian, becoming, with the captorhinid eureptiles, the dominant herbivores of terrestrial ecosystems in place of the edaphosaurids and diadectids.

Casea is a genus of herbivorous caseid synapsids that lived during the late Lower Permian (Kungurian) in what is now Texas, United States. The genus is only represented by its type species, Casea broilii, named by Samuel Wendell Williston in 1910. The species is represented by a skull associated with a skeleton, a second skull, a partial skull with a better preserved dentition than that of the preceding skulls, and several incomplete postcranial skeletons. Three other Casea species were later erected, but these are considered today to be invalid or belonging to different genera. Casea was a small animal with a length of about 1.20 m and a weight of around 20 kg.

<i>Anteosaurus</i> Extinct genus of anteosaurid synapsid from the Permian

Anteosaurus is an extinct genus of large carnivorous dinocephalian synapsid. It lived at the end of the Guadalupian during the Capitanian stage, about 265 to 260 million years ago in what is now South Africa. It is mainly known by cranial remains and few postcranial bones. With its skull reaching 80–90 cm (31–35 in) in length and a body size estimated at more than 5 m (16 ft) in length, and 500 to 600 kg in weight, Anteosaurus was the largest known carnivorous non-mammalian synapsid and the largest terrestrial predator of the Permian period. Occupying the top of the food chain in the Middle Permian, its skull, jaws and teeth show adaptations to capture large prey like the giants titanosuchids and tapinocephalids dinocephalians and large pareiasaurs.

<i>Cotylorhynchus</i> Extinct genus of synapsids

Cotylorhynchus is an extinct genus of herbivorous caseid synapsids that lived during the late Lower Permian (Kungurian) and possibly the early Middle Permian (Roadian) in what is now Texas and Oklahoma in the United States. The large number of specimens found make it the best-known caseid. Like all large herbivorous caseids, Cotylorhynchus had a short snout sloping forward and very large external nares. The head was very small compared to the size of the body. The latter was massive, barrel-shaped, and ended with a long tail. The limbs were short and robust. The hands and feet had short, broad fingers with powerful claws. The barrel-shaped body must have housed large intestines, suggesting that the animal had to feed on a large quantity of plants of low nutritional value. Caseids are generally considered to be terrestrial, though a semi-aquatic lifestyle has been proposed by some authors. The genus Cotylorhynchus is represented by three species, the largest of which could reach more than 6 m in length. However, a study published in 2022 suggests that the genus may be paraphyletic, with two of the three species possibly belonging to separate genera.

Angelosaurus is an extinct genus of herbivorous caseid synapsids that lived during the late Lower Permian (Kungurian) and early Middle Permian (Roadian) in what is now Texas and Oklahoma in the United States. Like other herbivorous caseids, it had a small head, large barrel-shaped body, long tail, and massive limbs. Angelosaurus differs from other caseids by the extreme massiveness of its bones, particularly those of the limbs, which show a strong development of ridges, processes, and rugosities for the attachment of muscles and tendons. Relative to its body size, the limbs of Angelosaurus were shorter and wider than those of other caseids. The ungual phalanges looked more like hooves than claws. The few known cranial elements show that the skull was short and more robust than that of the other representatives of the group. Angelosaurus is also distinguished by its bulbous teeth with shorter and wider crowns than those of other caseids. Their morphology and the high rate of wear they exhibit suggests a diet quite different from that of other large herbivorous caseids, and must have been based on particularly tough plants. A study published in 2022 suggests that the genus may be paraphyletic, with Angelosaurus possibly only represented by its type species A. dolani.

<i>Mesenosaurus</i> Extinct genus of synapsids

Mesenosaurus is an extinct genus of amniote. It belongs to the family Varanopidae. This genus includes two species: the type species Mesenosaurus romeri from the middle Permian Mezen River Basin of northern Russia, and Mesenosaurus efremovi from the early Permian (Artinskian) Richards Spur locality. M. romeri’s stratigraphic range is the middle to late Guadalupian while M. efremovi’s stratigraphic range is the Cisuralian.

Oromycter is an extinct genus of caseid synapsids from the Early Permian of Oklahoma. The sole and type species, Oromycter dolesorum, was named in 2005 by Robert R. Reisz.

<i>Phreatophasma</i> Extinct genus of synapsids

Phreatophasma is an extinct genus of synapsids from the Middle Permian of European Russia. It includes only one species, Phreatophasma aenigmatum, which is itself known from a single femur found in a mine near the town of Belebei in Bashkortostan. Phreatophasma comes from a fossil assemblage that is latest Ufimian to earliest Kazanian in age under the Russian stratigraphic scheme, correlating with the Roadian Age under the international stratigraphic timescale. Because the species is based on a single specimen with few diagnostic anatomical features, uncertainty remains as to where it belongs in tetrapod phylogeny; originally interpreted in 1954 as an enigmatic "theromorph" synapsid by Soviet paleontologist Ivan Yefremov, Phreatophasma was later described as a therapsid incertae sedis by American paleontologist Alfred Romer in 1956 and then as a member of a basal synapsid family called Caseidae starting with Everett C. Olson in 1962. Olson's classification was later supported by Canadian paleontologist Robert Reisz in 1986 and American paleontologist Robert L. Carroll in 1988. Ivakhneneko et al. (1997) and Maddin et al. (2008) both considered Phreatophasma an indeterminate synapsid.

<i>Callibrachion</i>

Callibrachion is an extinct genus of caseid synapsids that lived in east-central France during the Lower Permian (Asselian). The holotype and only known specimen (MNHN.F.AUT490) is represented by an almost complete postcranial skeleton associated with skull fragments discovered at the end of the 19th century in the Permian Autun basin in Saône-et-Loire department, in the Bourgogne-Franche-Comté region. It belongs to an immature individual measuring less than 1.50 m in length. Callibrachion was long considered a junior synonym of the genus Haptodus and classified among the sphenacodontid pelycosaurs. In 2015, a new study found that Callibrachion was a different animal from Haptodus and that it was a caseasaur rather than a sphenacodontid. This was confirmed in 2016 by a cladistic analysis which recovered Callibrachion as a basal caseid. Callibrachion's sharp teeth and unenlarged ribcage indicate that this animal was likely faunivorous.

<i>Raranimus</i> Extinct genus of therapsids

Raranimus is an extinct genus of therapsids of the Middle Permian. It was described in 2009 from a partial skull found in 1998 from the Dashankou locality of the Qingtoushan Formation, outcropping in the Qilian Mountains of Gansu, China. The genus is the most basal known member of the clade Therapsida, to which the later Mammalia belong.

Olson's Extinction was a mass extinction that occurred 273 million years ago in the late Cisuralian or early Guadalupian of the Permian period and which predated the Permian–Triassic extinction event. It is named after Everett C. Olson. There was a sudden change between the early Permian and middle/late Permian faunas. Some authors also place a hiatus in the continental fossil record around that time, but others disagree. Since then this event has been realized across many groups, including plants, marine invertebrates, and tetrapods.

Ruthenosaurus is an extinct genus of caseid synapsids that lived in what is now southern France during the Early Permian about 285 million years ago. It is known from the holotype MNHN.F.MCL-1 an articulated partial postcranial skeleton. It was collected by D. Sigogneau-Russell and D. Russell in 1970 in the upper part of the M2 Member, Grès Rouge Group, in the Rodez Basin, near the village of Valady, in Occitanie Region. It was first named by Robert R. Reisz, Hillary C. Maddin, Jörg Fröbisch and Jocelyn Falconnet in 2011, and the type species is Ruthenosaurus russellorum.

<i>Euromycter</i> Extinct genus of synapsids

Euromycter is an extinct genus of caseid synapsids that lived in what is now southern France during the Early Permian about 285 million years ago. The holotype and only known specimen of Euromycter (MNHN.F.MCL-2) includes the complete skull with lower jaws and hyoid apparatus, six cervical vertebrae with proatlas, anterior part of interclavicle, partial right clavicle, right posterior coracoid, distal head of right humerus, left and right radius, left and right ulna, and complete left manus. It was collected by D. Sigogneau-Russell and D. Russell in 1970 at the top of the M1 Member, Grès Rouge Group, near the village of Valady, Rodez Basin. It was first assigned to the species "Casea" rutena by Sigogneau-Russell and Russell in 1974. More recently, it was reassigned to its own genus, Euromycter, by Robert R. Reisz, Hillary C. Maddin, Jörg Fröbisch and Jocelyn Falconnet in 2011. The preserved part of the skeleton suggests a size between 1,70 m (5,5 ft) and 1,80 m (5,9 ft) in length for this individual.

<i>Pampaphoneus</i> Extinct genus of therapsids

Pampaphoneus is an extinct genus of carnivorous dinocephalian therapsid belonging to the family Anteosauridae. It lived 268 to 265 million years ago during the Wordian age of the Guadalupian period in what is now Brazil. Pampaphoneus is known by an almost complete skull with the lower jaw still articulated, discovered on the lands of the Boqueirão Farm, near the city of São Gabriel, in the state of Rio Grande do Sul. A second specimen from the same locality was reported in 2019 and 2020 but has not yet been described. It is composed of a skull associated with postcranial remains. It is the first South American species of dinocephalian to have been described. The group was previously known in South America only by a few isolated teeth and a jaw fragment reported in 2000 in the same region of Brazil. Phylogenetic analysis conducted by Cisneros and colleagues reveals that Pampaphoneus is closely related to anteosaurs from European Russia, indicating a closer faunal relationship between South America and Eastern Europe than previously thought, thus promoting a Pangea B continental reconstruction.

<i>Sinophoneus</i> Extinct genus of therapsids

Sinophoneus is an extinct genus of carnivorous dinocephalian therapsid belonging to the family Anteosauridae. It lived 272 to 270 million years ago at the beginning of the Middle Permian in what is now the Gansu Province in northern China. It is known by a skull of an adult individual, as well as by many skulls of juvenile specimens. The latter were first considered as belonging to a different animal, named Stenocybus, before being reinterpreted as immature Sinophoneus. Sinophoneus shows a combination of characters present in other anteosaurs. Its bulbous profile snout and external nostrils located in front of the canine are reminiscent of the basal anteosaur Archaeosyodon, while its massive transerse pterygoids processes with enlarged distal ends are more similar to the more derived anteosaurs Anteosaurus and Titanophoneus. First phylogenetic analyzes identified Sinophoneus as the most basal Anteosaurinae. A more recent analysis positioned it outside the Anteosaurinae and Syodontinae subclades, and recovers it as the most basal Anteosauridae.

Blattoidealestes is an extinct genus of therocephalian therapsid from the Middle Permian of South Africa. The type species Blattoidealestes gracilis was named by South African paleontologist Lieuwe Dirk Boonstra from the Tapinocephalus Assemblage Zone in 1954. Dating back to the Middle Permian, Blattoidealestes is one of the oldest therocephalians. It is similar in appearance to the small therocephalian Perplexisaurus from Russia, and may be closely related.

<i>Alierasaurus</i> Extinct genus of synapsids

Alierasaurus is an extinct genus of caseid synapsid that lived during the early Middle Permian (Roadian) in what is now Sardinia. It is represented by a single species, the type species Alierasaurus ronchii. Known from a very large partial skeleton found within the Cala del Vino Formation, Alierasaurus is one of the largest known caseids. It closely resembles Cotylorhynchus, another giant caseid from the San Angelo Formation in Texas. The dimensions of the preserved foot elements and caudal vertebrae suggest an estimated total length of about 6 or 7 m for Alierasaurus. In fact, the only anatomical features that differ between Alierasaurus and Cotylorhynchus are found in the bones of the feet; Alierasaurus has a longer and thinner fourth metatarsal and it has ungual bones at the tips of the toes that are pointed and claw-like rather than flattened as in other caseids. Alierasaurus and Cotylorhynchus both have very wide, barrel-shaped rib cages indicating that they were herbivores that fed primarily on high-fiber plant material.

<i>Lalieudorhynchus</i> Extinct genus of synapsids

Lalieudorhynchus is an extinct genus of caseid synapsids that lived during the Guadalupian in what is now the south of France. The genus is only known by its type species, Lalieudorhynchus gandi, which was named in 2022 by Ralf Werneburg, Frederik Spindler, Jocelyn Falconnet, Jean-Sébastien Steyer, Monique Vianey-Liaud, and Joerg W. Schneider. Lalieudorhynchus is represented by a partial postcranial skeleton discovered in the Lodève basin in the central part of the Hérault department in the Occitanie region. It belongs to an individual measuring approximately 3.75 m (12.3 ft) in length. The degree of ossification of its bones, however, indicates that it was a late juvenile or still growing young adult. Based on the internal structure of its bones, the describing authors interpreted Lalieudorhynchus as a semiaquatic animal that may have had a lifestyle similar to that of hippopotamus, spending part of its time in water but returning to land for food, though the idea that caseids were semi-aquatic has been previously contested by other authors. It is geologically one of the youngest known representatives of the caseids. The phylogenetic analysis proposed by Werneburg and colleagues identified Lalieudorhynchus as a derived caseid closely related to the North American species "Cotylorhynchus" hancocki.

References

  1. 1 2 3 4 Golubev, V.K. (2015). "Dinocephalian Stage in the History of the Permian Tetrapod Fauna of Eastern Europe". Paleontological Journal. 49 (12): 1346–1352. doi:10.1134/S0031030115120059. S2CID   130694755.
  2. Efremov, I.A. (1956). "[American elements in the fauna of Permian reptiles of the U.S.S.R.]". Doklady Akademii Nauk SSSR. 111 (5): 1091-1094 [in Russian].
  3. 1 2 3 4 5 6 7 8 9 10 11 12 Olson, E.C. (1968). "The family Caseidae". Fieldiana: Geology. 17: 225–349.
  4. 1 2 3 4 5 6 7 8 9 Maddin, H.C.; Sidor, C.A.; Reisz, R.R. (2008). "Cranial anatomy of Ennatosaurus tecton (Synapsida: Caseidae) from the Middle Permian of Russia and the evolutionary relationships of Caseidae". Journal of Vertebrate Paleontology. 28 (1): 160–180. doi:10.1671/0272-4634(2008)28[160:CAOETS]2.0.CO;2. S2CID   44064927.
  5. 1 2 3 4 5 6 Romano, M.; Brocklehurst, N.; Fröbisch, J. (2017). "The postcranial skeleton of Ennatosaurus tecton (Synapsida, Caseidae)". Journal of Systematic Palaeontology. 16 (13): 1097–1122. doi:10.1080/14772019.2017.1367729. S2CID   89922565.
  6. Kemp, T.S. (2005). The Origin & Evolution of Mammals. Oxford University Press. p. 22. ISBN   978-0198507611.
  7. "The Gift of Names: Tuditanus, Ennatosaurus, Bottosaurus, and more". Archives of the Dinosaur Mailing List. Ben Creisler. Retrieved 22 December 2014.
  8. 1 2 Ivakhnenko, M.F. (2008). "[Subclass Ophiacomorpha]". In Ivakhnenko, M.F.; Kurochkin, E.N. (eds.). [Fossil Vertebrates from Russia and Adjacent Countries. Fossil reptiles and birds. Part 1] (in Russian). Moscow: GEOS. pp. 95–100.
  9. Olson, E.C. (1962). "Late Permian terrestrial vertebrates, U.S.A. and U.S.S.R.". Transactions of the American Philosophical Society. New Series. 52 (52): 1–224. doi:10.2307/1005904. JSTOR   1005904.
  10. 1 2 3 Ivakhnenko, M.F. (2008). "Cranial morphology and evolution of Permian Dinomorpha (Eotherapsida) of Eastern Europe". Paleontological Journal. 42 (42, 859–995): 859–995. doi:10.1134/S0031030108090013. S2CID   85114195.
  11. Jansen, M.; Reisz, R.R.; Fröbisch, J. (2012). "A new basal dinocephalian from the Middle Permian Mezen fauna (Russia) and its implications for the evolution of basal therapsids". Conference Proceedings of the Centenary Meeting of the Paläontologische Gesellschaft, Terra Nostra 2013(3): 85–86.
  12. Jansen, M.; Reisz, R.R.; Kammerer, C.F.; Fröbisch, J. (2013). "3D reconstruction of a basal therapsid skull – combining modern and conventional methods for 3D retro-deformation". Palaeontology & Geobiology of Fossil Lagerstätten through Earth History.Abstract Volume, Göttingen, Universitätsdrucke: 93: 77–78.
  13. Gorsky, V.P.; Gusseva, E.A.; Crasquin-Soleau, S.; Broutin, J. (2003). "Stratigraphic data of the Middle – Late Permian on Russian Platform". Geobios. 36 (5): 533–558. doi:10.1016/S0016-6995(03)00057-3.
  14. Mujal, E.; Gretter, N.; Ronchi, A.; López-Gómez, J.; Falconnet, J.; Diez, J.B.; De la Horra, R.; Bolet, A.; Oms, O.; Arche, A.; Barrenechea, J.F.; Steyer, J.S.; Fortuny, J. (2016). "Constraining the Permian/Triassic transition in continental environments : Stratigraphic and paleontological record from the Catalan Pyrenees (NE Iberian Peninsula)". Palaeogeography, Palaeoclimatology, Palaeoecology. 445: 18–37. Bibcode:2016PPP...445...18M. doi:10.1016/j.palaeo.2015.12.008.
  15. 1 2 Romano, M.; Nicosia, U. (2015). "Cladistic analysis of Caseidae (Caseasauria, Synapsida): using the gap-weighting method to include taxa based on incomplete specimens". Palaeontology. 58 (6): 1109–1130. doi:10.1111/pala.12197. S2CID   86489484.
  16. 1 2 Berman, D.S.; Maddin, H.C.; Henrici, A.C.; Sumida, S.S.; Scott, D.; Reisz, R.R. (2020). "New primitive Caseid (Synapsida, Caseasauria) from the Early Permian of Germany". Annals of Carnegie Museum. 86 (1): 43–75. doi:10.2992/007.086.0103. S2CID   216027787.
  17. 1 2 Werneburg, R.; Spindler, F.; Falconnet, J.; Steyer, J.-S.; Vianey-Liaud, M.; Schneider, J.W. (2022). "A new caseid synapsid from the Permian (Guadalupian) of the Lodève basin (Occitanie, France)" (PDF). Palaeovertebrata. 45 (45(2)-e2): e2. doi:10.18563/pv.45.2.e2. S2CID   253542331.

See also