Varanops

Last updated

Varanops
Temporal range: Early Permian, 279.5–272.5  Ma
Exhibit Museum of Natural History, Ann Arbor - IMG 9107.JPG
Varanops brevirostris
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Chordata
Family: Varanopidae
Subfamily: Varanopinae
Genus: Varanops
Williston, 1914
Species:
V. brevirostris
Binomial name
Varanops brevirostris
(Williston, 1911 [originally Varanosaurus ])

Varanops is an extinct genus of Early Permian varanopid known from Texas and Oklahoma of the United States. It was first named by Samuel Wendell Williston in 1911 as a second species of Varanosaurus , Varanosaurus brevirostris. [1] In 1914, Samuel W. Williston reassigned it to its own genus and the type species is Varanops brevirostris. [2]

Contents

Reconstruction of Varanops brevirostris Varanops NT small.jpg
Reconstruction of Varanops brevirostris

Discovery

Restoration of V. brevirostris Varanops brevirostris2DB.jpg
Restoration of V. brevirostris

V. brevirostris is known from the holotype FMNH  UC 644, a three-dimensionally preserved nearly complete and articulated skeleton including a nearly complete skull and mandibles. It was collected in the Indian Creek, 35 site (= Cacops Bonebed), from the Arroyo Formation of the Clear Fork Group, Baylor County of Texas, dating to the early Kungurian stage of the Cisuralian Epoch, about 279.5-272.5 million years ago. Many well preserved specimens from the same locality and horizon of the type specimen, including FMNH UR 2423, nearly complete skull and mandibles, MCZ  1926, complete skull and mandibles and FMNH P 12841, partial skeleton, are referred to V. brevirostris. [3] One articulated skeleton with bite marks was found in southwest of Abilene (Arroyo Formation), Taylor County of Texas. [4] Specimens (OMNH  73156-73178) of V. brevirostris were also collected in the Richards Spur, from the Garber Formation (Dolese Brothers Limestone Quarry) of the Sumner Group, Comanche County of Oklahoma, dating to the same age. [3] Those remains came from at least three individuals, and represents the first varanodontine material from the Richards Spur. [5] Finally, TMM  43628-1, a partial skeleton with nearly complete skull, was collected in the Mud Hill locality, from the Vale Formation of the Clear Fork Group, Taylor County, also dating to the same age. [3]

Description

Varanops was a large amniote, around the size of the modern monitor lizards. It was about 1.2 m (3.9 ft) long, and had large limbs and sharp, backward-curving teeth. It was one of many agile, voracious predators among Permian tetrapods. Even though it was large for its time, Varanops was very small compared to the dinosaurs that came much later. [6]

Classification

Varanops is the type genus of the family Varanopidae. Cladistic analysis performed by Nicolás E. Campione and Robert R. Reisz in 2010 suggests that Varanops is a derived varanodontine, sister taxon to the clade formed by Varanodon and Watongia . [3]

Related Research Articles

<i>Cacops</i> Extinct genus of amphibians

Cacops, is a genus of dissorophid temnospondyls from the Kungurian stage of the early Permian of the United States. Cacops is one of the few olsoniforms whose ontogeny is known. Cacops fossils were almost exclusively known from the Cacops Bone Bed of the Lower Permian Arroyo Formation of Texas for much of the 20th century. New material collected from the Dolese Brothers Quarry, near Richards Spur, Oklahoma in the past few decades has been recovered, painting a clearer picture of what the animal looked and acted like.

Varanopidae is an extinct family of amniotes that resembled monitor lizards and may have filled a similar niche, hence the name. Typically, they are considered synapsids that evolved from an Archaeothyris-like synapsid in the Late Carboniferous. However, some recent studies have recovered them being taxonomically closer to diapsid reptiles. A varanopid from the latest Middle Permian Pristerognathus Assemblage Zone is the youngest known varanopid and the last member of the "pelycosaur" group of synapsids.

<i>Ophiacodon</i> Extinct genus of synapsids

Ophiacodon is an extinct genus of synapsid belonging to the family Ophiacodontidae that lived from the Late Carboniferous to the Early Permian in North America and Europe. The genus was named along with its type species O. mirus by paleontologist Othniel Charles Marsh in 1878 and currently includes five other species. As an ophiacodontid, Ophiacodon is one of the most basal synapsids and is close to the evolutionary line leading to mammals.

<i>Mycterosaurus</i> Extinct genus of tetrapods

Mycterosaurus is an extinct genus of synapsids belonging to the family Varanopidae. It is classified in the varanopid subfamily Mycterosaurinae. Mycterosaurus is the most primitive member of its family, existing from 290.1 to 272.5 MYA, known to Texas and Oklahoma. It lacks some features that its advanced relatives have.

Casea is a genus of herbivorous caseid synapsids that lived during the late Lower Permian (Kungurian) in what is now Texas, United States. The genus is only represented by its type species, Casea broilii, named by Samuel Wendell Williston in 1910. The species is represented by a skull associated with a skeleton, a second skull, a partial skull with a better preserved dentition than that of the preceding skulls, and several incomplete postcranial skeletons. Three other Casea species were later erected, but these are considered today to be invalid or belonging to different genera. Casea was a small animal with a length of about 1.20 m and a weight of around 20 kg.

<i>Varanodon</i> Extinct genus of tetrapods

Varanodon is an extinct genus of amniotes from the family Varanopidae. It has been found in the Chickasha Formation of Oklahoma, which dates to the Roadian stage of the Middle Permian. The largest varanopid known at the time of its description, with a skull length of 17.5 centimetres (6.9 in), it was closely related to and lived alongside its much larger relative Watongia. The two may represent growth stages of a single animal.

<span class="mw-page-title-main">Trematopidae</span> Extinct family of amphibians

Trematopidae is a family of dissorophoid temnospondyl spanning the late Carboniferous to the early Permian. Together with Dissorophidae, the family forms Olsoniformes, a clade comprising the medium-large terrestrial dissorophoids. Trematopids are known from numerous localities in North America, primarily in New Mexico, Oklahoma, and Texas, and from the Bromacker quarry in Germany.

<i>Aerosaurus</i> Extinct genus of tetrapod

Aerosaurus is an extinct genus within Varanopidae, a family of non-mammalian synapsids. It lived between 252-299 million years ago during the Early Permian in North America. The name comes from Latin aes (aeris) “copper” and Greek sauros “lizard,” for El Cobre Canyon in northern New Mexico, where the type fossil was found and the site of former copper mines. Aerosaurus was a small to medium-bodied carnivorous synapsid characterized by its recurved teeth, triangular lateral temporal fenestra, and extended teeth row. Two species are recognized: A. greenleeorum (1937) and A. wellesi (1981).

Elliotsmithia is a small varanopid synapsid found from the late Middle Permian of South Africa. It is the sole basal synapsid "pelycosaur" known from the supercontinent Gondwana and only two specimens have been yielded to date. Its species name longiceps is derived from Latin, meaning "long head". Both known Elliotsmithia fossils were recovered from Abrahamskraal Formation rocks—within the boundaries of the Tapinocephalus Assemblage Zone—of the lower Beaufort Group. It was named for the late Sir Grafton Elliot Smith in 1937.

<i>Mesenosaurus</i> Extinct genus of synapsids

Mesenosaurus is an extinct genus of amniote. It belongs to the family Varanopidae. This genus includes two species: the type species Mesenosaurus romeri from the middle Permian Mezen River Basin of northern Russia, and Mesenosaurus efremovi from the early Permian (Artinskian) Richards Spur locality. M. romeri’s stratigraphic range is the middle to late Guadalupian while M. efremovi’s stratigraphic range is the Cisuralian.

Pyozia is an extinct genus of basal Middle Permian varanopid synapsids known from Russia. It was first named by Jason S. Anderson and Robert R. Reisz in 2004 and the type species is Pyozia mesenensis. Pyozia mesenensis is known from the holotype PIN 3717/33, a three-dimensionally preserved partial skeleton including a nearly complete skull. It was collected from the Krasnoschelsk Formation, dating to the Capitanian stage of the Guadalupian epoch, about 264.28-263 million years ago.

<i>Watongia</i> Extinct genus of synapsids

Watongia is an extinct genus of non-mammalian synapsids from Middle Permian of Oklahoma. Only one species has been described, Watongia meieri, from the Chickasha Formation. It was assigned to family Gorgonopsidae by Olson and to Eotitanosuchia by Carroll. Reisz and collaborators assigned the genus in Varanopidae. Based on comparisons of its vertebrae with other varanopids, it was the largest varanopid with a body length of approximately 2 metres. It was a contemporary of its closest relative, the much smaller Varanodon; the two may possibly represent growth stages of a single animal.

<i>Heleosaurus</i> Extinct genus of tetrapods

Heleosaurus scholtzi is an extinct species of basal synapsids, known as pelycosaurs, in the family of Varanopidae during the middle Permian. At first H. scholtzi was mistakenly classified as a diapsid. Members of this family were carnivorous and had dermal armor, and somewhat resembled monitor lizards. This family was the most geologically long lived, widespread, and diverse group of early amniotes. To date only two fossils have been found in the rocks of South Africa. One of these fossils is an aggregation of five individuals.

Pasawioops is an extinct genus of early Permian dissorophoid temnospondyl within the clade Amphibamiformes.

<i>Rubeostratilia</i> Extinct genus of amphibians

Rubeostratilia is an extinct genus of amphibamiform temnospondyl from the early Permian of Texas. It is known from a single skull. This genus was named by Hélène Bourget and Jason S. Anderson in 2011, and the type species is Rubeostratilia texensis. The genus name comes from the Latin translation of 'redbeds' in reference to the Texas redbeds that produced both the holotype and many other early Permian fossils. The specific name is for the state of Texas. The holotype and only known specimen was collected in 1941 from the Nocona Formation exposures in Clay County by a Works Projects Administration project that was transferred to the Field Museum of Natural History through an interinstitutional exchange with the Texas Memorial Museum.

<i>Orovenator</i>

Orovenator is an extinct genus of diapsid from Lower Permian deposits of Oklahoma, United States. It is known from two partial skulls from the Richards Spur locality in Oklahoma. The holotype OMNH 74606 consists of a partial skull preserving snout and mandible, and the referred specimen, OMNH 74607, a partial skull preserving the skull roof, vertebrae and palatal elements. It was first named by Robert R. Reisz, Sean P. Modesto and Diane M. Scott in 2011 and the type species is Orovenator mayorum. The generic name means "mountain", oro, in Greek in reference to the Richards Spur locality, which was mountainous during the Permian period and "hunter", venator, in Latin. The specific name honours Bill and Julie May. Orovenator is the oldest and most basal neodiapsid to date.

<i>Apsisaurus</i> Extinct genus of tetrapods

Apsisaurus is an extinct genus of Early Permian varanopid synapsids known from Texas of the United States. It was first named by Michel Laurin in 1991 and the type species is Apsisaurus witteri. Apsisaurus witteri is known from the holotype MCZ 1474, a three-dimensionally preserved partial skeleton including an incomplete skull and mandibles. The skull roof of Archeria is also articulated to the postcranial skeleton. It was collected in the Archer City Bonebed 1 site, from the Archer City Formation of the Wichita Group, dating to the Early Permian epoch. Apsisaurus was formerly assigned as an "eosuchian" diapsid. In 2010, it was redescribed by Robert R. Reisz, Michel Laurin and David Marjanović; their phylogenetic analysis found it to be a basal varanopid synapsid.

<span class="mw-page-title-main">Paleontology in Oklahoma</span>

Paleontology in Oklahoma refers to paleontological research occurring within or conducted by people from the U.S. state of Oklahoma. Oklahoma has a rich fossil record spanning all three eras of the Phanerozoic Eon. Oklahoma is the best source of Pennsylvanian fossils in the United States due to having an exceptionally complete geologic record of the epoch. From the Cambrian to the Devonian, all of Oklahoma was covered by a sea that would come to be home to creatures like brachiopods, bryozoans, graptolites and trilobites. During the Carboniferous, an expanse of coastal deltaic swamps formed in areas of the state where early tetrapods would leave behind footprints that would later fossilize. The sea withdrew altogether during the Permian period. Oklahoma was home a variety of insects as well as early amphibians and reptiles. Oklahoma stayed dry for most of the Mesozoic. During the Late Triassic, carnivorous dinosaurs left behind footprints that would later fossilize. During the Cretaceous, however, the state was mostly covered by the Western Interior Seaway, which was home to huge ammonites and other marine invertebrates. During the Cenozoic, Oklahoma became home to creatures like bison, camels, creodonts, and horses. During the Ice Age, the state was home to mammoths and mastodons. Local Native Americans are known to have used fossils for medicinal purposes. The Jurassic dinosaur Saurophaganax maximus is the Oklahoma state fossil.

<span class="mw-page-title-main">Richards Spur</span>

Richards Spur is a Permian fossil locality located at the Dolese Brothers Limestone Quarry north of Lawton, Oklahoma. The locality preserves clay and mudstone fissure fills of a karst system eroded out of Ordovician limestone and dolomite, with the infilling dating to the Artinskian stage of the early Permian (Cisuralian), around 289 to 286 million years ago. Fossils of terrestrial animals are abundant and well-preserved, representing one of the most diverse Paleozoic tetrapod communities known. A common historical name for the site is Fort Sill, in reference to the nearby military base. Fossils were first reported at the quarry by workers in 1932, spurring a wave of collecting by local and international geologists. Early taxa of interest included the abundant reptile Captorhinus and microsaurs such as Cardiocephalus and Euryodus. Later notable discoveries include Doleserpeton, the most diverse assortment of parareptiles in the Early Permian, and the rare early diapsid Orovenator.

References

  1. Samuel W. Williston (1911). American Permian vertebrates. University of Chicago Press, Chicago. pp. 130 pp.
  2. Samuel W. Williston (1914). "The osteology of some American Permian vertebrates". The Journal of Geology. 1 (4): 107–162. Bibcode:1914JG.....22..364W. doi:10.1086/622158. hdl: 2027/inu.39000025065264 .
  3. 1 2 3 4 Nicolás E. Campione and Robert R. Reisz (2010). "Varanops brevirostris (Eupelycosauria: Varanopidae) from the Lower Permian of Texas, with discussion of varanopid morphology and interrelationships". Journal of Vertebrate Paleontology. 30 (3): 724–746. doi:10.1080/02724631003762914.
  4. Robert R. Reisz and Lnda A. Tsuji (2006). "An articulated skeleton of Varanops with bite marks: the oldest known evidence of scavenging among terrestrial vertebrates". Journal of Vertebrate Paleontology. 26 (4): 1021–1023. doi:10.1671/0272-4634(2006)26[1021:AASOVW]2.0.CO;2.
  5. Hillary C. Maddin, David C. Evans and Robert R. Reisz (2006). "An Early Permian varanodontine varanopid (Synapsida: Eupelycosauria) from the Richards Spur locality, Oklahoma". Journal of Vertebrate Paleontology. 26 (4): 957–966. doi:10.1671/0272-4634(2006)26[957:AEPVVS]2.0.CO;2.
  6. Benson, R.; Anderson, J.; Brusatte, S.; Clack, J.; Dennis-Bryan, K.; Duffin, C.; Hone, D.; Naish, D.; Xu, X.; Prothero, D.; Parsons, K.; Milner, A.; Johanson, Z. (2012). Prehistoric Life. London: Dorling Kindersley. p. 165. ISBN   978-0-7566-9910-9.