Molecular breast imaging

Last updated
Scintimammography
Mammography and scintimammography of carcinoma.jpg
Mammography (left) and DMSA scintimammography (right) images of 4.5cm breast carcinoma
Synonyms Nuclear medicine breast imaging
Breast specific gamma imaging
Breast scintigraphy
Molecular breast imaging
ICD-10-PCS CH1
ICD-9-CM 92.19
HCPCS-L2 S8080

Molecular breast imaging (MBI), also known as scintimammography, is a type of breast imaging test that is used to detect cancer cells in breast tissue of individuals who have had abnormal mammograms, especially for those who have dense breast tissue, post-operative scar tissue or breast implants. [1]

Contents

MBI is not used for screening or in place of a mammogram. Rather, it is used when the detection of breast abnormalities is not possible or not reliable on the basis of mammography and ultrasound alone. When mammography plus ultrasound are insufficient to characterize an abnormality, the gold standard next step is Magnetic Resonance Imaging (MRI) of the breast. However, in patients with contraindications (e.g. certain implantable devices) or who prefer to avoid MRI (claustrophobia, discomfort), use of scintimammography is an acceptable alternative. [2] [1]

Mechanism

Scintiamammorgraphy is based on the principle of scintigraphy, where the gamma radiation emitted from injected radiopharmaceuticals is measured by gamma cameras. Cancer cells take up radiopharmaceutical at a higher rate than surrounding normal tissue, and as such they show up on scintigraphy as areas of increases gamma radiation emission. A limitation to this principle is that not all breast lesions with metabolic activity higher than background are cancerous (eg fibroadenoma), and as such judicious use of molecular breast imaging by breast imagers is required. [3]

The most common radiopharmaceutical used in MBI is 99mTc-sestamibi, with doses of 240-300 MBq in current protocols, resulting in an effective dose to a patient of around 2.4 mSv. Earlier iterations of MBI required much higher doses of radiation up to 1100 MBq, which in part led to MBI falling out of favor in the latter part of the last century. However advances in gamma camera technology such as breast specific gamma imaging (BSGI) have allowed for quality resolution at much lower radiation doses, and as such there has been increasing use of MBI. [1] [3] [4]

Molecular breast imaging added to screening mammogram increases cancer detection rate by about 7-16 positive results per 1000 tests completed, however the dose of radiation experienced by the patient is increased. [1] [3] [4] [5] [6]

Procedure

The procedure is conducted according to practice guidelines corresponding to the region where they are performed (American College of Radiology guidelines in the U.S.). A patient can expect to receive an injection of radiopharmaceutical agent intravenously in the arm contralateral to the breast under investigation. After waiting 5–10 minutes, the breast tissue is placed into the MBI system and a series of images are obtained. Imaging time for both breasts is approximately 40 minutes. For lesions identifiable on MBI but not mammography or ultrasound, MBI guided biopsy is appropriate. [3] [7]

Equipment

Breast-specific gamma cameras have been developed with a smaller field of view than conventional cameras, allowing higher resolution imagery and compression of the breast as in x-ray mammography (which improves detection of smaller lesions). [8] [9]

Clinical indications

Mammography is widely accepted as the first-line screening option for the detection of breast cancer, with a sensitivity for detection of cancer at around 85-90%. However, in patients with dense breast tissue or those with risk of breast cancer greater than 20%, the sensitivity of mammography drops significantly, with some studies reporting a sensitivity of less than 50%. [3] In these patients, many centers utilize breast ultrasound as additional screening modality, which studies have shown increases breast cancer detection by 2 cancers detected per 1000 people screened. [6] Ultrasound also plays an important role in further characterization of indeterminate lesions seen on screening mammography, but it does result in a significant increase in false positive rate when compared to mammography alone. [6] [10] Breast MRI is considered the gold-standard in supplemental imaging of dense breasts, with an increase in cancer detection of about 15 cancers per 1000 screens. In patients where MRI is contraindicated (certain implantable devices, certain kidney conditions) or in those who prefer to avoid MRI (claustrophobia), molecular breast imaging is a viable alternative. MBI has shown to increase detection of breast cancer in dense breasts by 7-16 cancers per 1000 screens. [1] [3] [5]

See also

Related Research Articles

<span class="mw-page-title-main">Medical imaging</span> Technique and process of creating visual representations of the interior of a body

Medical imaging is the technique and process of imaging the interior of a body for clinical analysis and medical intervention, as well as visual representation of the function of some organs or tissues (physiology). Medical imaging seeks to reveal internal structures hidden by the skin and bones, as well as to diagnose and treat disease. Medical imaging also establishes a database of normal anatomy and physiology to make it possible to identify abnormalities. Although imaging of removed organs and tissues can be performed for medical reasons, such procedures are usually considered part of pathology instead of medical imaging.

<span class="mw-page-title-main">Mammography</span> Process of using low-energy X-rays to examine the human breast for diagnosis and screening

Mammography is the process of using low-energy X-rays to examine the human breast for diagnosis and screening. The goal of mammography is the early detection of breast cancer, typically through detection of characteristic masses or microcalcifications.

<span class="mw-page-title-main">Nuclear medicine</span> Medical specialty

Nuclear medicine or nucleology is a medical specialty involving the application of radioactive substances in the diagnosis and treatment of disease. Nuclear imaging, in a sense, is "radiology done inside out" because it records radiation emitted from within the body rather than radiation that is transmitted through the body from external sources like X-ray generators. In addition, nuclear medicine scans differ from radiology, as the emphasis is not on imaging anatomy, but on the function. For such reason, it is called a physiological imaging modality. Single photon emission computed tomography (SPECT) and positron emission tomography (PET) scans are the two most common imaging modalities in nuclear medicine.

Technetium (<sup>99m</sup>Tc) sestamibi Pharmaceutical drug

Technetium (99mTc) sestamibi (INN) is a pharmaceutical agent used in nuclear medicine imaging. The drug is a coordination complex consisting of the radioisotope technetium-99m bound to six (sesta=6) methoxyisobutylisonitrile (MIBI) ligands. The anion is not defined. The generic drug became available late September 2008. A scan of a patient using MIBI is commonly known as a "MIBI scan".

<span class="mw-page-title-main">Scintigraphy</span> Diagnostic imaging test in nuclear medicine

Scintigraphy, also known as a gamma scan, is a diagnostic test in nuclear medicine, where radioisotopes attached to drugs that travel to a specific organ or tissue (radiopharmaceuticals) are taken internally and the emitted gamma radiation is captured by gamma cameras, which are external detectors that form two-dimensional images in a process similar to the capture of x-ray images. In contrast, SPECT and positron emission tomography (PET) form 3-dimensional images and are therefore classified as separate techniques from scintigraphy, although they also use gamma cameras to detect internal radiation. Scintigraphy is unlike a diagnostic X-ray where external radiation is passed through the body to form an image.


Computed tomography laser mammography (CTLM) is the trademark of Imaging Diagnostic Systems, Inc. for its optical tomographic technique for female breast imaging.

<span class="mw-page-title-main">Bone scintigraphy</span> Nuclear medicine imaging technique

A bone scan or bone scintigraphy is a nuclear medicine imaging technique of the bone. It can help diagnose a number of bone conditions, including cancer of the bone or metastasis, location of bone inflammation and fractures, and bone infection (osteomyelitis).

<span class="mw-page-title-main">Breast MRI</span> Form of breast imaging

One alternative to mammography, breast MRI or contrast-enhanced magnetic resonance imaging (MRI), has shown substantial progress in the detection of breast cancer.

BI-RADS is an acronym for Breast Imaging-Reporting and Data System, a quality assurance tool originally designed for use with mammography. The system is a collaborative effort of many health groups but is published and trademarked by the American College of Radiology (ACR).

<span class="mw-page-title-main">Breast cancer screening</span> Medical screening of asymptomatic, healthy women for breast cancer

Breast cancer screening is the medical screening of asymptomatic, apparently healthy women for breast cancer in an attempt to achieve an earlier diagnosis. The assumption is that early detection will improve outcomes. A number of screening tests have been employed, including clinical and self breast exams, mammography, genetic screening, ultrasound, and magnetic resonance imaging.

Daniel B. Kopans, MD, FACR is a radiologist specializing in mammography and other forms of breast imaging.

The Digital Mammographic Imaging Screening Trial (DMIST) is a multi-institutional research study on the efficacy for screening of Full Field digital mammography (FFDM) compared to conventional film-screen mammography that was sponsored by the U.S. National Cancer Institute and performed by ACRIN.

<span class="mw-page-title-main">Breast ultrasound</span> Type of medical imaging

Breast ultrasound is a medical imaging technique that uses medical ultrasonography to perform imaging of the breast. It can be performed for either diagnostic or screening purposes and can be used with or without a mammogram. In particular, breast ultrasound may be useful for younger women who have denser fibrous breast tissue that may make mammograms more challenging to interpret.

<span class="mw-page-title-main">Positron emission mammography</span> Imaging procedure used to detect breast cancer

Positron emission mammography (PEM) is a nuclear medicine imaging modality used to detect or characterise breast cancer. Mammography typically refers to x-ray imaging of the breast, while PEM uses an injected positron emitting isotope and a dedicated scanner to locate breast tumors. Scintimammography is another nuclear medicine breast imaging technique, however it is performed using a gamma camera. Breasts can be imaged on standard whole-body PET scanners, however dedicated PEM scanners offer advantages including improved resolution.

<span class="mw-page-title-main">Triple test score</span>

The triple test score is a diagnostic tool for examining potentially cancerous breasts. Diagnostic accuracy of the triple test score is nearly 100%. Scoring includes using the procedures of physical examination, mammography and needle biopsy. If the results of a triple test score are greater than five, an excisional biopsy is indicated.

Dynamic angiothermography (DATG) is a technique for the diagnosis of breast cancer. This technique, though springing from the thermography of old conception, is based on a completely different principle. DATG records the temperature variations linked to the vascular changes in the breast due to angiogenesis. The presence, change, and growth of tumors and lesions in breast tissue change the vascular network in the breast. Consequently, measuring the vascular structure over time, DATG effectively monitors the change in breast tissue due to tumors and lesions. It is currently used in combination with other techniques for diagnosis of breast cancer. This diagnostic method is a low cost one compared with other techniques.

Automated whole-breast ultrasound (AWBU) is a medical imaging technique used in radiology to obtain volumetric ultrasound data of the entire breast.

<span class="mw-page-title-main">Breast imaging</span>

In medicine, breast imaging is a sub-speciality of diagnostic radiology that involves imaging of the breasts for screening or diagnostic purposes. There are various methods of breast imaging using a variety of technologies as described in detail below. Traditional screening and diagnostic mammography uses x-ray technology and has been the mainstay of breast imaging for many decades. Breast tomosynthesis is a relatively new digital x-ray mammography technique that produces multiple image slices of the breast similar to, but distinct from, computed tomography (CT). Xeromammography and galactography are somewhat outdated technologies that also use x-ray technology and are now used infrequently in the detection of breast cancer. Breast ultrasound is another technology employed in diagnosis and screening that can help differentiate between fluid filled and solid lesions, an important factor to determine if a lesion may be cancerous. Breast MRI is a technology typically reserved for high-risk patients and patients recently diagnosed with breast cancer. Lastly, scintimammography is used in a subgroup of patients who have abnormal mammograms or whose screening is not reliable on the basis of using traditional mammography or ultrasound.

HB 2102, also known as "Henda's Law", is a breast density (BD) notification law approved in 2011 by the FDA that mammography patients be provided educational materials on dense breast tissue can hide abnormalities, including breast cancer, from traditional screening. Henda's Law aims to promote patient doctor discussion as well as reduce the rate of false negatives, as mammography may not detect abnormalities in dense breasts.

Dense breast tissue, also known as dense breasts, is a condition of the breasts where a higher proportion of the breasts are made up of glandular tissue and fibrous tissue than fatty tissue. Around 40–50% of women have dense breast tissue and one of the main medical components of the condition is that mammograms are unable to differentiate tumorous tissue from the surrounding dense tissue. This increases the risk of late diagnosis of breast cancer in women with dense breast tissue. Additionally, women with such tissue have a higher likelihood of developing breast cancer in general, though the reasons for this are poorly understood.

References

  1. 1 2 3 4 5 Muzahir, Saima (December 2020). "Molecular Breast Cancer Imaging in the Era of Precision Medicine". American Journal of Roentgenology. 215 (6): 1512–1519. doi:10.2214/AJR.20.22883. ISSN   0361-803X. PMID   33084364. S2CID   224823965.
  2. Monticciolo, Debra L.; Newell, Mary S.; Moy, Linda; Niell, Bethany; Monsees, Barbara; Sickles, Edward A. (March 2018). "Breast Cancer Screening in Women at Higher-Than-Average Risk: Recommendations From the ACR". Journal of the American College of Radiology. 15 (3): 408–414. doi: 10.1016/j.jacr.2017.11.034 . ISSN   1546-1440. PMID   29371086.
  3. 1 2 3 4 5 6 Patel, Miral M.; Adrada, Beatriz Elena; Fowler, Amy M.; Rauch, Gaiane M. (October 2023). "Molecular Breast Imaging and Positron Emission Mammography". PET Clinics. 18 (4): 487–501. doi:10.1016/j.cpet.2023.04.005. ISSN   1556-8598. PMID   37258343. S2CID   258985887.
  4. 1 2 Dibble, Elizabeth H.; Hunt, Katie N.; Ehman, Eric C.; O'Connor, Michael K. (August 2020). "Molecular Breast Imaging in Clinical Practice". American Journal of Roentgenology. 215 (2): 277–284. doi:10.2214/AJR.19.22622. ISSN   0361-803X. PMID   32551908. S2CID   219920040.
  5. 1 2 "Molecular Breast Imaging". Society of Nuclear Medicine and Molecular Imaging. Retrieved 15 Oct 2023.
  6. 1 2 3 Huppe, Ashley I.; Mehta, Anita K.; Brem, Rachel F. (2018-02-01). "Molecular Breast Imaging: A Comprehensive Review". Seminars in Ultrasound, CT and MRI. Breast Imaging: State of the Art. 39 (1): 60–69. doi:10.1053/j.sult.2017.10.001. ISSN   0887-2171. PMID   29317040.
  7. "ACR Practice Parameter for the Performance of Molecular Breast Imaging (MBI) Using a Dedicated Gamma Camera". American College of Radiology. 2022. Retrieved Oct 15, 2022.
  8. Fass, Leonard (August 2008). "Imaging and cancer: A review". Molecular Oncology. 2 (2): 115–152. doi: 10.1016/j.molonc.2008.04.001 . PMC   5527766 . PMID   19383333.
  9. Goldsmith, S. J.; Parsons, W.; Guiberteau, M. J.; Stern, L. H.; Lanzkowsky, L.; Weigert, J.; Heston, T. F.; Jones, E.; Buscombe, J.; Stabin, M. G. (5 November 2010). "SNM Practice Guideline for Breast Scintigraphy with Breast-Specific γ-Cameras 1.0". Journal of Nuclear Medicine Technology. 38 (4): 219–224. doi: 10.2967/jnmt.110.082271 . PMID   21057112.
  10. Mann, Ritse M.; Athanasiou, Alexandra; Baltzer, Pascal A. T.; Camps-Herrero, Julia; Clauser, Paola; Fallenberg, Eva M.; Forrai, Gabor; Fuchsjäger, Michael H.; Helbich, Thomas H.; Killburn-Toppin, Fleur; Lesaru, Mihai; Panizza, Pietro; Pediconi, Federica; Pijnappel, Ruud M.; Pinker, Katja (2022-06-01). "Breast cancer screening in women with extremely dense breasts recommendations of the European Society of Breast Imaging (EUSOBI)". European Radiology. 32 (6): 4036–4045. doi:10.1007/s00330-022-08617-6. ISSN   1432-1084. PMC   9122856 . PMID   35258677.

PD-icon.svg This article incorporates public domain material from Dictionary of Cancer Terms. U.S. National Cancer Institute.