Orthokaryotes

Last updated

The Orthokaryotes (Cavalier-Smith 2017) are a proposed Eukaryote clade consisting of the Jakobea and the Neokaryotes. [1] Together with its sister Discicristata it forms a basal Eukaryote clade. They are characterized by stacked Golgi, orthogonal centrioles, and two opposite posterior ciliary roots.

Taxonomy

A proposed cladogram is [2] [3] [4] [5] [6] [7] [8] [9] [1]

Eukaryota

Tsukubea

Discicristata

Euglenozoa

Percolozoa

Orthokaryotes

Jakobea

Neokaryotes
Corticata/Diaphoretickes/

Archaeplastida

Chromista

Hacrobia

SAR

Bikont
Scotokaryotes/Opimoda/Neozoa

Metamonada

Malawimonas

Sulcozoa/Podiata/

Planomonadida

Mantamonadida

Diphyllatea

Amorphea/

Amoebozoa

Obazoa

Breviata

Apusomonadida

Opisthokonta/Choanozoa

Unikont
Sarcomastigota

Related Research Articles

Excavata Supergroup of unicellular organisms belonging to the domain Eukaryota

Excavata is a major supergroup of unicellular organisms belonging to the domain Eukaryota. It was first suggested by Simpson and Patterson in 1999 and introduced by Thomas Cavalier-Smith in 2002 as a formal taxon. It contains a variety of free-living and symbiotic forms, and also includes some important parasites of humans, including Giardia and Trichomonas. Excavates were formerly considered to be included in the now obsolete Protista kingdom. They are classified based on their flagellar structures, and they are considered to be the most basal Flagellate lineage. Phylogenomic analyses split the members of the Excavates into three different and not all closely related groups: Discobids, Metamonads and Malawimonads. Except for Euglenozoa, they are all non-photosynthetic.

Chromista Eukaryotic biological kingdom

Chromista is a biological kingdom consisting of single-celled and multicellular eukaryotic species that share similar features in their photosynthetic organelles (plastids). It includes all protists whose plastids contain chlorophyll c, such as some algae, diatoms, oomycetes, and protozoans. It is probably a polyphyletic group whose members independently arose as a separate evolutionary group from the common ancestor of all eukaryotes. As it is assumed the last common ancestor already possessed chloroplasts of red algal origin, the non-photosynthetic forms evolved from ancestors able to perform photosynthesis. Their plastids are surrounded by four membranes, and are believed to have been acquired from some red algae.

Thomas Cavalier-Smith British evolutionary biologist

Thomas (Tom) Cavalier-Smith, FRS, FRSC, NERC Professorial Fellow, was a Professor of Evolutionary Biology in the Department of Zoology, at the University of Oxford. His research has led to discovery of a number of unicellular organisms (protists) and creation of taxonomic groups, such as the introduction of the kingdom Chromista, and other groups including chromalveolata, Opisthokonta, Rhizaria, and Excavata. He was well known for his system of classification of all organisms.

Cercozoa Group of single-celled organisms

The Cercozoa are a group of single-celled eukaryotes. They lack shared morphological characteristics at the microscopic level, being defined by molecular phylogenies of rRNA and actin or polyubiquitin. They are the natural predators of many species of microbacteria and Archea.

Amoebozoa Phylum of protozoans

Amoebozoa is a major taxonomic group containing about 2,400 described species of amoeboid protists, often possessing blunt, fingerlike, lobose pseudopods and tubular mitochondrial cristae. In most classification schemes, Amoebozoa is ranked as a phylum within either the kingdom Protista or the kingdom Protozoa. In the classification favored by the International Society of Protistologists, it is retained as an unranked "supergroup" within Eukaryota. Molecular genetic analysis supports Amoebozoa as a monophyletic clade. Most phylogenetic trees identify it as the sister group to Opisthokonta, another major clade which contains both fungi and animals as well as some 300 species of unicellular protists. Amoebozoa and Opisthokonta are sometimes grouped together in a high-level taxon, variously named Unikonta, Amorphea or Opimoda.

Amorphea Members of the Unikonta, a taxonomic group proposed by Thomas Cavalier-Smith

Amorphea are members of a taxonomic supergroup that includes the basal Amoebozoa and Obazoa. That latter contains the Opisthokonta, which includes the Fungi, Animals and the Choanomonada, or Choanoflagellates. The taxonomic affinities of the members of this clade were originally described and proposed by Thomas Cavalier-Smith in 2002.

Bikont Group of eukaryotes

A bikont is any of the eukaryotic organisms classified in the group Bikonta. Many single-celled members of the group, and the presumed ancestor, have two flagella.

Corticata Type of plant

Corticata, in the classification of eukaryotes, is a clade suggested by Thomas Cavalier-Smith to encompass the eukaryote supergroups of the following two groups:

Loukozoa Proposed taxon

Loukozoa is a proposed taxon used in some classifications of eukaryotes, consisting of the Metamonada and Malawimonadea. Ancyromonads are closely related to this group, as sister of the entire group, or as sister of the Metamonada. Amorphea may have emerged in this grouping, specifically as sister of the Malawimonads.

SAR supergroup Eukaryotes superphylum

SAR or Harosa is a clade that includes stramenopiles (heterokonts), alveolates, and Rhizaria. The name is an acronym derived from the first letters of each of these clades; it has been alternatively spelled "RAS". The term "Harosa" has also been used. The SAR supergroup was formulated as the node-based taxon.

Plants+HC+SAR megagroup Taxon of eukaryotes

The Archaeplastida+HC+SAR megagroup is a group of eukaryotes proposed by Burki et al. (2008). It is also referred to as Diaphoretickes or the SAR/HA Supergroup, or the Corticata with Rhizaria.

Podiata Clade of shelled animals

Podiates are a proposed clade containing the Amorphea and the organisms now assigned to the clade CRuMs. Ancyromonadida does not appear to have emerged in this grouping. Sarcomastigota is a proposed subkingdom that includes all the podiates that are not animals or fungi. Sulcozoa is a proposed phylum within Sarcomastigota that does not include the phyla Amoebozoa (clade) and Choanozoa (paraphyletic), i.e. it includes the proposed subphyla Apusozoa and Varisulca

The biological classification system of life introduced by British zoologist Thomas Cavalier-Smith involves systematic arrangements of all life forms on earth. Following and improving the classification systems introduced by Carl Linnaeus, Ernst Haeckel, Robert Whittaker, and Carl Woese, Cavalier-Smith's classification attempts to incorporate the latest developments in taxonomy. His classification has been a major foundation in modern taxonomy, particularly with revisions and reorganisations of kingdoms and phyla.

Varisulca Proposed phylum of protists

Varisulca was a proposed basal Podiate taxon. It encompassed several lineages of heterotrophic protists, most notably the ancyromonads (planomonads), collodictyonids (diphylleids), rigifilids and mantamonadids. Recent evidence suggests that the latter three are closely related to each other, forming a clade called CRuMs, but that this is unlikely to be specifically related to ancyromonads

Cryptista Phylum of algae

Cryptista is a clade of algae-like eukaryotes. It is sometimes placed along with Haptista in the group Hacrobia, within the kingdom Chromista. However, in 2016, a broad phylogenomic study found that cryptists fall within the group Archaeplastida, while haptophytes are closely related to the SAR supergroup.

Haptista Group of protists

Haptista is a proposed group of protists made up of centrohelids and haptophytes. Phylogenomic studies indicate that Haptista forms a sister clade to the SAR supergroup.

Obazoa Eukaryotic clade comprising opisthokonts, Breviata, and apousomonads

Obazoa is a proposed sister clade of Amoebozoa. Obazoa is composed of Breviatea, Apusomonadida and Opisthokonta, and specifically excludes the Amoebozoa. The term Obazoa is based on the OBA acronym for Opisthokonta, Breviatea, and Apusomonadida.

Neokaryotes

The neokaryotes are a proposed eukaryote clade consisting of the unikonts and the bikonts as sister of for instance the Jakobea. It arises because the Euglenozoa, Percolozoa, Tsukubea, and Jakobea are seen in this view as more basal eukaryotes. These four groups, are traditionally grouped together in the Discoba. However, the Discoba may well be paraphyletic as the neokaryotes may have emerged in them.

The Scotokaryotes (Cavalier-Smith) is a proposed basal Neokaryote clade as sister of the Diaphoretickes. Basal Scotokaryote groupings are the Metamonads, the Malawimonas and the Podiata. In this phylogeny the Discoba are sometimes seen as paraphyletic and basal Eukaryotes.

The Mantamonadidae are of free-living heterotrophic flagellates that move primarily by gliding on surfaces. There is one genus, Mantamonas. It has been suggested previously that the Mantamonadidae be classified in Apusozoa as sister of the Apusmonadida on the basis of rRNA analyses. However, mantamonads are currently placed in CRuMs on the basis of phylogenomic analyses that identify their closest relatives as the collodictyonids (=diphylleids) and Rigifila.

References

  1. 1 2 Cavalier-Smith, Thomas (2017-09-05). "Kingdom Chromista and its eight phyla: a new synthesis emphasising periplastid protein targeting, cytoskeletal and periplastid evolution, and ancient divergences". Protoplasma. 255 (1): 297–357. doi:10.1007/s00709-017-1147-3. ISSN   0033-183X. PMC   5756292 . PMID   28875267.
  2. Zaremba-Niedzwiedzka, Katarzyna; Caceres, Eva F.; Saw, Jimmy H.; Bäckström, Disa; Juzokaite, Lina; Vancaester, Emmelien; Seitz, Kiley W.; Anantharaman, Karthik; Starnawski, Piotr (2017-01-11). "Asgard archaea illuminate the origin of eukaryotic cellular complexity" (PDF). Nature. advance online publication (7637): 353–358. doi:10.1038/nature21031. ISSN   1476-4687. OSTI   1580084. PMID   28077874. S2CID   4458094.
  3. Derelle, Romain; Torruella, Guifré; Klimeš, Vladimír; Brinkmann, Henner; Kim, Eunsoo; Vlček, Čestmír; Lang, B. Franz; Eliáš, Marek (2015-02-17). "Bacterial proteins pinpoint a single eukaryotic root". Proceedings of the National Academy of Sciences. 112 (7): E693–E699. doi: 10.1073/pnas.1420657112 . ISSN   0027-8424. PMC   4343179 . PMID   25646484.
  4. Cavalier-Smith, T.; Chao, E. E.; Snell, E. A.; Berney, C.; Fiore-Donno, A. M.; Lewis, R. (2014). "Multigene eukaryote phylogeny reveals the likely protozoan ancestors of opisthokonts (animals, fungi, choanozoans) and Amoebozoa". Molecular Phylogenetics & Evolution. 81: 71–85. doi: 10.1016/j.ympev.2014.08.012 . PMID   25152275.
  5. Cavalier-Smith, Thomas (2010-06-23). "Kingdoms Protozoa and Chromista and the eozoan root of the eukaryotic tree". Biology Letters. 6 (3): 342–345. doi:10.1098/rsbl.2009.0948. ISSN   1744-9561. PMC   2880060 . PMID   20031978.
  6. He, Ding; Fiz-Palacios, Omar; Fu, Cheng-Jie; Fehling, Johanna; Tsai, Chun-Chieh; Baldauf, Sandra L. (2014). "An Alternative Root for the Eukaryote Tree of Life". Current Biology. 24 (4): 465–470. doi: 10.1016/j.cub.2014.01.036 . PMID   24508168.
  7. Cavelier Smith (2013). "Early evolution of eukaryote feeding modes, cell structural diversity, and classification of the protozoan phyla Loukozoa, Sulcozoa, and Choanozoa". European Journal of Protistology. 49 (2): 115–178. doi:10.1016/j.ejop.2012.06.001. PMID   23085100.
  8. Hug, Laura A.; Baker, Brett J.; Anantharaman, Karthik; Brown, Christopher T.; Probst, Alexander J.; Castelle, Cindy J.; Butterfield, Cristina N.; Hernsdorf, Alex W.; Amano, Yuki (2016-04-11). "A new view of the tree of life". Nature Microbiology. 1 (5): 16048. doi: 10.1038/nmicrobiol.2016.48 . ISSN   2058-5276. PMID   27572647.
  9. Cavalier-Smith, Thomas; Chao, Ema E.; Lewis, Rhodri (2016-06-01). "187-gene phylogeny of protozoan phylum Amoebozoa reveals a new class (Cutosea) of deep-branching, ultrastructurally unique, enveloped marine Lobosa and clarifies amoeba evolution". Molecular Phylogenetics and Evolution. 99: 275–296. doi: 10.1016/j.ympev.2016.03.023 . PMID   27001604.