Rainwater harvesting in the United Kingdom

Last updated

Rainwater harvesting in the United Kingdom is a practice of growing importance. Rainwater harvesting in the UK is both a traditional and reviving technique for collecting water for domestic uses and is generally used for non-hygienic purposes like watering gardens, flushing toilets, and washing clothes. [1] In commercial premises like supermarkets it is used for things like toilet flushing where larger tank systems can be used collecting between 1000 and 7500 litres of water. It is claimed that in the South East of England there is less water available per person than in many Mediterranean countries.[ citation needed ]

Contents

Rainwater is almost always collected strictly from the roof, then heavily filtered using either a filter attached to the down pipe, a fine basket filter or for more expensive systems like self-cleaning filters placed in an underground tank. [2] UK homes using some form of rainwater harvesting system can reduce their mains water usage by 50% or more, although a 20-30% saving is more common. [3] At the present time (depending upon where you live in the UK) mains water delivery and equivalent waste water and sewerage processing costs about £2 per cubic metre. Reducing mains-water metered volumes also reduces the sewerage and sewage disposal costs in the same proportion, because water company billing assumes that all water taken into the house is discharged into the sewers.

Current status

The velodrome of the London Olympic Park is designed to harvest rainwater London Velopark, 16 April 2012.jpg
The velodrome of the London Olympic Park is designed to harvest rainwater

In recent years, rainwater harvesting has become more common due to increasing water prices. While rainwater harvesting has been employed in high-profile facilities like the velodrome of the London Olympic Park, the UK's ongoing revival has lagged behind other countries such as Germany (the present world leader in modern rainwater harvesting). [4] At present, only about 400 RWH systems are installed in the UK every year.

Some large retail developments are now incorporating rainwater harvesting even in some of the wetter parts of the UK. [5]

Rainwater harvesting was being encouraged by the government of the UK through the Code for Sustainable Homes. The code ranked homes on a scale of one through six and requires new homes to have a score of at least three. One way to raise the score of a newly designed home is to incorporate a rainwater harvesting system. The code was revoked in 2015. [6]

In the United Kingdom, water butts are often found in domestic gardens and on allotments to collect rainwater, which is then used to water the garden. However, the British government's Code for Sustainable Homes encouraged fitting large underground tanks to newly built homes to collect rainwater for flushing toilets, watering, and washing. Ideal designs had the potential to reduce demand on mains water supply by half.

The Environment Agency has noted that water resources in the UK are under increasing pressure because of the growing population. In addition, the agency has warned that the South East of England is facing more serious water scarcity than anywhere else in England or Wales, such that the per-capita water supply is lower than many Mediterranean countries. The agency encourages a two-pronged approach to both reduce demand and increase supply, such as through the use of rainwater harvesting. However, there is a fundamental mismatch between supply and demand; the areas of the UK suffering water scarcity are in most cases also areas with low rainfall, which means the economics of installing a domestic RWH system are less favourable. [7] The environmental impacts of domestic RWH systems in energy terms are questioned since the water supply accounts for a very small proportion of total energy use (approximately 4%). [8] [9] For a UK household, the CO2 impact of supplying water to the house is around 100g of CO2 per day, around 1/600th of its total daily impact. However, in countries without widespread mains water supplies, or where the environmental impact of mains water is very high, RWH may have more merit.

The installation of rainwater harvesting systems in the UK should be done according to the Water Supply (Water Fittings) Regulations and BS EN 16941-1:2018 [10] in order to ensure safety. BS EN 16941-1:2018 also provides details on how to size the storage tank for water supply and allows estimation of the potential water savings. In addition The SuDS Manual also offers guidance on designing systems for stormwater management. [11] If you install a RWH system, you will need to inform your water company.

Rainwater harvesting at large scale may well be appropriate for farms as part of a catchment management strategy to decrease flood risk and diffuse pollution. [12] [13]

History

Center - Latrines of Housesteads Roman Fort; Top left - Rainwater collection tank Kastell Housestead Latrine1.jpg
Center – Latrines of Housesteads Roman Fort; Top left – Rainwater collection tank

Prior to the widespread use of water mains, RWH was a traditional means of getting water in the UK. Even as far back as the 2nd-century AD, archaeological evidence shows that rainwater harvesting was being used by Housesteads Roman Fort in Northumberland as a way to flush the latrines. [14] English castles from the 12th and 13th-century also have notable rainwater harvesting systems, such as Carreg Cennen, Orford, [15] and Warkworth Castle. [16]

In the 19th and the early 20th century, prior to widespread access to water mains, most large middle-class homes got their drinking water from springs and wells, but this water was usually hard which made it unsuitable for washing. Thus, such homes were usually designed to also harvest rainwater to be used in washing. [17] During the interwar period, houses in hard water areas were sometimes built with rainwater storage tanks forming the roof of a scullery. Rainwater was led down to a third tap for washing purposes. Rainwater harvesting declined in popularity as water mains became more widespread through the early 20th century onwards.

See also

Related Research Articles

An autonomous building is a building designed to be operated independently from infrastructural support services such as the electric power grid, gas grid, municipal water systems, sewage treatment systems, storm drains, communication services, and in some cases, public roads.

<span class="mw-page-title-main">Greywater</span> Type of wastewater generated in households without toilet wastewater

Greywater refers to domestic wastewater generated in households or office buildings from streams without fecal contamination, i.e., all streams except for the wastewater from toilets. Sources of greywater include sinks, showers, baths, washing machines or dishwashers. As greywater contains fewer pathogens than blackwater, it is generally safer to handle and easier to treat and reuse onsite for toilet flushing, landscape or crop irrigation, and other non-potable uses. Greywater may still have some pathogen content from laundering soiled clothing or cleaning the anal area in the shower or bath.

Sustainable living describes a lifestyle that attempts to reduce the use of Earth's natural resources by an individual or society. Its practitioners often attempt to reduce their ecological footprint by altering their home designs and methods of transportation, energy consumption and diet. Its proponents aim to conduct their lives in ways that are consistent with sustainability, naturally balanced, and respectful of humanity's symbiotic relationship with the Earth's natural ecology. The practice and general philosophy of ecological living closely follows the overall principles of sustainable development.

<span class="mw-page-title-main">Flush toilet</span> Toilet that uses water to convey human waste down a pipe

A flush toilet is a toilet that disposes of human waste by using the force of water to flush it through a drainpipe to another location for treatment, either nearby or at a communal facility, thus maintaining a separation between humans and their waste. Flush toilets can be designed for sitting or squatting, in the case of squat toilets. Most modern sewage treatment systems are also designed to process specially designed toilet paper. The opposite of a flush toilet is a dry toilet, which uses no water for flushing.

<span class="mw-page-title-main">Water conservation</span> Policies for sustainable development of water use

Water conservation includes all the policies, strategies and activities to sustainably manage the natural resource of fresh water, to protect the hydrosphere, and to meet the current and future human demand. Population, household size and growth and affluence all affect how much water is used.

<span class="mw-page-title-main">Rainwater harvesting</span> Accumulation of rainwater for reuse

Rainwater harvesting (RWH) is the collection and storage of rain, rather than allowing it to run off. Rainwater is collected from a roof like surface and redirected to a tank, cistern, deep pit, aquifer, or a reservoir with percolation, so that it seeps down and restores the ground water. Dew and fog can also be collected with nets or other tools. Rainwater harvesting differs from stormwater harvesting as the runoff is typically collected from roofs and other area surfaces for storage and subsequent reuse. Its uses include watering gardens, livestock, irrigation, domestic use with proper treatment, and domestic heating. The harvested water can also be committed to longer-term storage or groundwater recharge.

<span class="mw-page-title-main">Toilets in Japan</span> Description of toilets in Japan

Toilets in Japan are sometimes designed more elaborately than toilets commonly seen in other developed nations. European toilets occasionally have a separate bidet whilst Japan combines an electronic bidet with the toilet. The current state of the art for Western-style toilets in Japan is the bidet toilet, which as of March 2016 is installed in 81% of Japanese households. In Japan, these bidets are commonly called washlets, a brand name of Toto Ltd., and they may include many advanced features rarely seen outside of Asia. The basic feature set commonly found on washlets consists of anal hygiene, bidet washing, seat warming, and deodorization.

<span class="mw-page-title-main">Composting toilet</span> Type of toilet that treats human excreta by a biological process called composting

A composting toilet is a type of dry toilet that treats human waste by a biological process called composting. This process leads to the decomposition of organic matter and turns human waste into compost-like material. Composting is carried out by microorganisms under controlled aerobic conditions. Most composting toilets use no water for flushing and are therefore called "dry toilets".

<span class="mw-page-title-main">Cistern</span> Waterproof receptacle for holding liquids, usually water

A cistern is a waterproof receptacle for holding liquids, usually water. Cisterns are often built to catch and store rainwater. Cisterns are distinguished from wells by their waterproof linings. Modern cisterns range in capacity from a few litres to thousands of cubic metres, effectively forming covered reservoirs.

Water supply and sanitation in Hong Kong is characterized by water import, reservoirs, and treatment infrastructure. Though multiple measures were made throughout its history, providing an adequate water supply for Hong Kong has met with numerous challenges because the region has few natural lakes and rivers, inadequate groundwater sources, a high population density, and extreme seasonable variations in rainfall. Thus nearly 80 percent of water demand is met by importing water from mainland China, based on a longstanding contract. In addition, freshwater demand is curtailed by the use of seawater for toilet flushing, using a separate distribution system. Hong Kong also uses reservoirs and water treatment plants to maintain its source of clean water.

The Bangalore Water Supply and Sewerage Board (BWSSB) is the premier governmental agency responsible for sewage disposal and water supply to the Indian city of Bangalore. It was formed in 1964.

<span class="mw-page-title-main">Rainwater tank</span>

A rainwater tank is a water tank used to collect and store rain water runoff, typically from rooftops via pipes. Rainwater tanks are devices for collecting and maintaining harvested rain. A rainwater catchment or collection system can yield 2,358 litres (623 US gal) of water from 2.54 cm (1.00 in) of rain on a 92.9 m2 (1,000 sq ft) roof.

Delhi Jal Board (DJB) is the government agency responsible for supply of potable water to the most of the National Capital Territory region of Delhi, India. Delhi Jal Board was constituted on 6 April 1998 through an Act of the Delhi Legislative Assembly incorporating the previous Delhi Water Supply and Sewage Disposal Undertaking. DJB is also responsible for treatment and disposal of waste water.

<span class="mw-page-title-main">Toilet</span> Piece of hardware for the collection or disposal of human excreta

A toilet is a piece of sanitary hardware that collects human urine and feces, and sometimes toilet paper, usually for disposal. Flush toilets use water, while dry or non-flush toilets do not. They can be designed for a sitting position popular in Europe and North America with a toilet seat, with additional considerations for those with disabilities, or for a squatting posture more popular in Asia, known as a squat toilet. In urban areas, flush toilets are usually connected to a sewer system; in isolated areas, to a septic tank. The waste is known as blackwater and the combined effluent, including other sources, is sewage. Dry toilets are connected to a pit, removable container, composting chamber, or other storage and treatment device, including urine diversion with a urine-diverting toilet.

<span class="mw-page-title-main">Stormwater harvesting</span>

Stormwater harvesting or Stormwater reuse is the collection, accumulation, treatment or purification, and storage of stormwater for its eventual reuse. While rainwater harvesting collects precipitation primarily from rooftops, stormwater harvesting deals with collection of runoff from creeks, gullies, ephemeral streams, underground conveyances. It can also include catchment areas from developed surfaces, such as roads or parking lots, or other urban environments such as parks, gardens and playing fields.

<span class="mw-page-title-main">History of water supply and sanitation</span>

The history of water supply and sanitation is one of a logistical challenge to provide clean water and sanitation systems since the dawn of civilization. Where water resources, infrastructure or sanitation systems were insufficient, diseases spread and people fell sick or died prematurely.

<span class="mw-page-title-main">Water-sensitive urban design</span> Integrated approach to urban water cycle

Water-sensitive urban design (WSUD) is a land planning and engineering design approach which integrates the urban water cycle, including stormwater, groundwater, and wastewater management and water supply, into urban design to minimise environmental degradation and improve aesthetic and recreational appeal. WSUD is a term used in the Middle East and Australia and is similar to low-impact development (LID), a term used in the United States; and Sustainable Drainage System (SuDS), a term used in the United Kingdom.

<span class="mw-page-title-main">Rainwater harvesting in Canada</span>

Rainwater harvesting is becoming a procedure that many Canadians are incorporating into their daily lives, although data does not give exact figures for implementation. Rainwater can be used for a number of purposes including stormwater reduction, irrigation, laundry and portable toilets. In addition to low costs, rainwater harvesting is useful for landscape irrigation. Many Canadians have started implementing rainwater harvesting systems for use in stormwater reduction, irrigation, laundry, and lavatory plumbing. Provincial and municipal legislation is in place for regulating the rights and uses for captured rainwater. Substantial reform to Canadian law since the mid-2000s has increased the use of this technology in agricultural, industrial, and residential use, but ambiguity remains amongst legislation in many provinces. Bylaws and local municipal codes often regulate rainwater harvesting.

<span class="mw-page-title-main">Vortex filter</span> Rainwater filter

A vortex filter is a filter used in rainwater harvesting systems to separate medium to large sized debris from the flow of water before the water flows into a tank, cistern or reservoir. by directing the flow around the inside of the wall of the filter housing. Any material with a density greater than water is pushed to the outside and allows cleaner water to flow through a central fine mesh basket into the supply pipe.

Rainwater management is a series of countermeasures to reduce runoff volume and improve water quality by replicating the natural hydrology and water balance of a site, with consideration of rainwater harvesting, urban flood management and rainwater runoff pollution control.

References

  1. "Harvesting rainwater for domestic uses: an information guide" (PDF). Environment Agency. October 2010. Retrieved 23 January 2021.
  2. "Rainwater Filters". Rainharvesting Systems. Retrieved 8 March 2017.
  3. "Rainwater harvesting". SVCwater. Retrieved 27 July 2013.
  4. "Learning legacy – Rainwater harvesting at the Velodrome" (PDF). Olympic Delivery Authority. October 2011. Retrieved 13 August 2012.
  5. "M&S CHESHIRE OAKS STORE – WATER". MM&S, Cheshire Oaks. 2016. Retrieved 31 August 2016.
  6. "Rainwater Harvesting: Environmental and Regulatory Aspects" (PDF). RainWater-Harvesting. October 2008. pp. 3–4. Retrieved 14 August 2012.[ permanent dead link ]
  7. "A whole life costing approach for rainwater harvesting systems".
  8. "Energy and carbon implications of rainwater harvesting and greywater recycling" (PDF).
  9. "Quantifying the Energy and Carbon effects of Water Saving. Full technical report". Archived from the original on 8 April 2018. Retrieved 8 March 2017.
  10. "BS EN 16941-1:2018 – On-site non-potable water systems. Systems for the use of rainwater". shop.bsigroup.com. Retrieved 19 March 2021.
  11. "SuDS Manual". susdrain.org. Retrieved 19 March 2021.
  12. "Rainwater harvesting. An on-farm guide".
  13. "Rainwater harvesting on farms. Presentation by Phil Metcalfe, ADAS".
  14. "English Heritage Teacher's Kit – Housesteads Roman Fort" (PDF). English Heritage. July 2012. p. 5. Retrieved 13 August 2012.
  15. "English Heritage Teacher's Kit – Orford Castle". English Heritage. January 2000. pp. 3, 7. Retrieved 13 August 2012.
  16. "English Heritage Teacher's Kit – Warkworth Castle" (PDF). English Heritage. May 2011. p. 5. Retrieved 13 August 2012.
  17. Eveleigh, David J. (2006). "Evolution of Building Elements – The Services of Victorian and Edwardian Houses 1850-1914". University of the West of England Faculty of Environment and Technology. Archived from the original on 7 March 2014. Retrieved 13 August 2012.