Salina Group | |
---|---|
Stratigraphic range: Homerian-Přídolí ~ | |
Type | Geological group |
Unit of | Cayugan Series |
Sub-units | Appalachian Basin & Michigan Basin Illinois Basin
|
Underlies | Helderberg Group |
Overlies | Lockport Group & Bloomsburg Formation |
Lithology | |
Primary | Dolomite & Shale |
Other | Anhydrite, Limestone, Gypsum & Halite |
Location | |
Region | Appalachian Basin & Michigan Basin of eastern North America |
Country | United States of America and Canada |
Type section | |
Named for | Salt found within the formation |
Named by | James Dwight Dana |
The Salina Group or Salina Formation is a Late Silurian-age, Stratigraphic unit of sedimentary rock that is found in Northeastern and Midwestern North America. Named for its Halite beds, the phrase "Salina Group" was first used as a descriptive term by James D. Dana in 1863. [1]
The Salina is an extensive formation. It ranges from West Virginia up through Pennsylvania into Ohio and then Michigan in the United States, and from Pennsylvania into New York. It is also found in the Canadian province of Ontario. (See Figure 1.)
The thickness of the Salina Group varies greatly within the two basins, ranging from 84 feet in the southwestern corner of Michigan to an estimated 5,000 feet in that state's Gladwin County. [3]
This formation is of economic importance for salt mining, oil reservoir creation, [4] gypsum mining, [5] and potential natural gas storage. [6] Research has also been done on the viability of storing radioactive waste in the salt beds of the Salina. [7]
The Salina Formation is composed chiefly of dolomite and shale, interbedded with anhydrite, gypsum, and salt. [8]
Stratigraphically, the Salina is placed in the Late Silurian age and is the lower member of the Cayugan Series. It overlies predominantly the Lockport; in parts central to northeast Pennsylvania it overlies the Bloomsburg Formation. It also underlies the Helderberg Group. [9]
Being a thick formation, the Salina has subunits, as well as letter designations for the different formations. The letters originate at the base (oldest) with the A unit to the stratigraphic top H unit (youngest) made up of Anhydrite. [10]
During an extensive study in the state of Michigan, each unit was mapped. Unit A consists of dolomite and shaly dolomite, and is the bottom of the Vernon. Where the formation thickens, there may also be one or two large salt beds within the unit. Anhydrite can be found throughout this unit. [3] Due to unit A having two salt or anhydrite beds, it is often divided into the A1 and A2, with A1 being the basal unit. [11]
Unit B is another salt unit and marks the Middle Vernon. The percentage of salt can range from 90% to 100%. Thin dolomite beds run through this unit. In comparison, Unit C marks the top of the Vernon Formation. It is a shaly dolomite; however, it can range from pure shale to pure dolomite beds within the unit. Anhydrite can be prevalent within this unit as well.
Unit D, the bottom of the Syracuse formation, is almost pure salt. Some dolomite may also occur within this unit. It is the thinnest unit of the Salina, and is not always present.
Unit E consists of shale, but can include dolomitic shale and dolomite. Anhydrite may also be present within this unit and is also part of the Syracuse.
Unit F is the youngest and largest salt in the group, also known as the Syracuse Formation. Where thicker, the F has beds of salt separated by rock grading from shale to dolomite, often with anhydrite present especially in the shale.
Unit G is the Camillus, which consists of dolomite and anhydrite while unit H is known as the Bertie Formation. In the Michigan Basin, the Bertie is pinched out; the Bass Islands Formation makes up the upper most Salina.
Wabash Formation made up of the Liston Creek Member, Kenneth Limestone Member, Kokomo Limestone Member and the Mississinewa Shale member.
The Pleasant Mills Formation is made up of the Louisville Equivalent Member and Waldon Equivalent Member and Limberlost Dolomite Member. The Pleasant Mills Formation is equivalent to the entire "A Unit" in the Appalachian Basin. [12]
Salt mines and brine wells are located in Western New York, Northeast Ohio and Detroit, Michigan with Ohio's salt production predating European settlement of the area as Native Americans collected and processed brine from springs in several locations, including "salt licks" where minerals were deposited by brine seeping out of the ground. Licking County was named for this natural phenomenon. [13] Mahoning County's name is derived from a Native American term "ma-hon-ink" meaning "at the lick." [14]
Throughout the early 1800s, Ohio's salt demand exceeded its production from brine wells and licks. Oil and gas exploration facilitated the discovery of salt during the 1860s; however, it was not until 1886 when the Cleveland Rolling Mill was drilling its second natural gas well that it hit brine. The salt was located at a depth of approximately 1,900 feet. [14]
By the 1890s, brine wells were drilled and operating in Cleveland. During this period, five salt-producing companies operated in Northeast Ohio. Sterling Morton built a salt mine at a depth of 1800 feet on Cleveland's east side and Clarence Foster examined drilling records from Standard Oil along Lake Erie. [14]
In 1827, Gypsum was first identified in Michigan, near Grand Rapids. An Odawa man discovered it in a rock outcrop along Plaster Creek where it enters Grand River. [15]
In 1838, Michigan's first state geologist, Douglass Houghton, arrived to select a site for salt mining and reported an abundance of gypsum in the area. That same year, he and Bela Hubbard discovered an outcrop of gypsum at the mouth of the Au Gres River in Saginaw Bay. [15] In 1841, Daniel Ball and business partner Warren Granger built a mill to process gypsum in 1841; a mill built by Houghton and Hubbard in Alabaster, Michigan became operational in 1862. [15]
The Salina serves as an oil reservoir formation along the Findlay Arch from Southwestern Michigan down into Northwest Ohio. Salt is not present along the Arch System.
Medusaegraptusgraminiformis (Ruedemann 1925)
Orbiculoidea bertiensis (Ruedemann)
Lingula semina (Ruedemann)
Cyathophyllum hydraulicum (Simpson)
Eurypterus remipes (DeKay, 1825)
Archaeophonus eurypteroides (Kjellesvig-Waering 1966)
Proscorpius osborni (Whitfield 1885)
Paracarcinosoma scorpionis (Grote & Pitt)
Eurypterus lacustris (Harlan, 1834)
Erettopterus waylandsmithi (Kjellesvig-Waering & Caster 1955)
Waeringopterus cumberlandicus (Leutze, 1961)
Waeringopterus apfeli (Leutze, 1961)
Dolichopterus herkimerensis (Caster and Kjellesvig-Waering 1956)
Leperditia scalaris (Jones 1856)
Megalomus canadensis (Hall, 1852)
Eurypterus is an extinct genus of eurypterid, a group of organisms commonly called "sea scorpions". The genus lived during the Silurian period, from around 432 to 418 million years ago. Eurypterus is by far the most well-studied and well-known eurypterid. Eurypterus fossil specimens probably represent more than 95% of all known eurypterid specimens.
Pterygotus is a genus of giant predatory eurypterid, a group of extinct aquatic arthropods. Fossils of Pterygotus have been discovered in deposits ranging in age from Middle Silurian to Late Devonian, and have been referred to several different species. Fossils have been recovered from four continents; Australia, Europe, North America and South America, which indicates that Pterygotus might have had a nearly cosmopolitan (worldwide) distribution. The type species, P. anglicus, was described by Swiss naturalist Louis Agassiz in 1839, who gave it the name Pterygotus, meaning "winged one". Agassiz mistakenly believed the remains were of a giant fish; he would only realize the mistake five years later in 1844.
The Michigan Basin is a geologic basin centered on the Lower Peninsula of the U.S. state of Michigan. The feature is represented by a nearly circular pattern of geologic sedimentary strata in the area with a nearly uniform structural dip toward the center of the peninsula.
Carcinosoma is a genus of eurypterid, an extinct group of aquatic arthropods. Fossils of Carcinosoma are restricted to deposits of late Silurian age. Classified as part of the family Carcinosomatidae, which the genus lends its name to, Carcinosoma contains seven species from North America and Great Britain.
Hughmilleria is a genus of eurypterid, an extinct group of aquatic arthropods. Fossils of Hughmilleria have been discovered in deposits of the Silurian age in China and the United States. Classified as part of the basal family Hughmilleriidae, the genus contains three species, H. shawangunk from the eastern United States, H. socialis from Pittsford, New York, and H. wangi from Hunan, China. The genus is named in honor of the Scottish geologist Hugh Miller.
Bassipterus is a genus of eurypterid, an extinct group of aquatic arthropods. Bassipterus is classified as part of the family Adelophthalmidae, the only clade within the derived ("advanced") Adelophthalmoidea superfamily of eurypterids. Fossils of the single and type species, B. virgnicus, have been discovered in deposits of the Late Silurian age in West Virginia and Maryland, United States. The genus is named after Bass, where most of the fossils have been recovered.
Nanahughmilleria is a genus of eurypterid, an extinct group of aquatic arthropods. Fossils of Nanahughmilleria have been discovered in deposits of Devonian and Silurian age in the United States, Norway, Russia, England and Scotland, and have been referred to several different species.
Pittsfordipterus is a genus of eurypterid, an extinct group of aquatic arthropods. Pittsfordipterus is classified as part of the family Adelophthalmidae, the only clade in the derived ("advanced") Adelophthalmoidea superfamily of eurypterids. Fossils of the single and type species, P. phelpsae, have been discovered in deposits of Silurian age in Pittsford, New York state. The genus is named after Pittsford, where the two only known specimens have been found.
Salteropterus is a genus of eurypterid, an extinct group of aquatic arthropods. Fossils of Salteropterus have been discovered in deposits of Late Silurian age in Britain. Classified as part of the family Slimonidae, the genus contains one known valid species, S. abbreviatus, which is known from fossils discovered in Herefordshire, England, and a dubious species, S. longilabium, with fossils discovered in Leintwardine, also in Herefordshire. The generic name honours John William Salter, who originally described S. abbreviatus as a species of Eurypterus in 1859.
Erettopterus is a genus of large predatory eurypterid, an extinct group of aquatic arthropods. Fossils of Erettopterus have been discovered in deposits ranging from Early Silurian to the Early Devonian, and have been referred to several different species. Fossils have been recovered from two continents; Europe and North America. The genus name is composed by the Ancient Greek words ἐρέττω (eréttō), which means "rower", and πτερόν (pterón), which means "wing", and therefore, "rower wing".
Rhinocarcinosoma is a genus of eurypterid, an extinct group of aquatic arthropods. Fossils of Rhinocarcinosoma have been discovered in deposits ranging of Late Silurian age in the United States, Canada and Vietnam. The genus contains three species, the American R. cicerops and R. vaningeni and the Vietnamese R. dosonensis. The generic name is derived from the related genus Carcinosoma, and the Greek ῥινός, referring to the unusual shovel-shaped protrusion on the front of the carapace of Rhinocarcinosoma, its most distinctive feature.
Parahughmilleria is a genus of eurypterid, an extinct group of aquatic arthropods. Fossils of Parahughmilleria have been discovered in deposits of the Devonian and Silurian age in the United States, Canada, Russia, Germany, Luxembourg and Great Britain, and have been referred to several different species. The first fossils of Parahughmilleria, discovered in the Shawangunk Mountains in 1907, were initially assigned to Eurypterus. It would not be until 54 years later when Parahughmilleria would be described.
Carcinosomatidae is a family of eurypterids, an extinct group of aquatic arthropods. They were members of the superfamily Carcinosomatoidea, also named after Carcinosoma. Fossils of carcinosomatids have been found in North America, Europe and Asia, the family possibly having achieved a worldwide distribution, and range in age from the Late Ordovician to the Early Devonian. They were among the most marine eurypterids, known almost entirely from marine environments.
The Black River Group is a geologic group that covers three sedimentary basins in the Eastern and Midwestern United States. These include the Appalachian Basin, Illinois Basin and the Michigan Basin. It dates back to the Late Ordovician period. It is roughly equivalent to the Platteville Group in Illinois. In Kentucky and Tennessee it is also known as the High Bridge Group. In areas where this Geologic Unit thins it is also called the Black River Formation (undifferentiated). One example of this is over the Cincinnati Arch and Findley Arch. Large parts of the Black River have been dolomized (where the parent limestone CaCO3 has been turned into dolomite CaMg(CO3)2.) This happed when there was interaction of hot saline brine and the limestone. This created hydrothermal dolomites that in some areas serve as petroleum reservoirs.
The Syracuse Formation is a geologic formation in the Appalachian Basin. It is the main salt bearing formation of the Salina Group. This formation depending on location contains up to six salt beds. Aside from salt the formation is made up of dolomite, shale, gypsum and anhydrite. Salt is commercially extracted in Michigan, New York and Ohio. Gypsum mining operations in Michigan and New York are also noted.
The Vernon Formation is a geologic formation in the Appalachian Basin. It is the lowest unit of the Salina Group. It is made up of red and green shales, siltstone, dolomite, anhydrite and halite. It is made up of three distinct units starting at the bottom (oldest) A, B and C units. These units correspond to units of the same name in its parent group the Salina.
The Wellington Formation is an Early Permian geologic formation in Kansas and Oklahoma. The formation's Hutchinson Salt Member is more recognized by the community than the formation itself, and the salt is still mined in central Kansas. The Wellington provides a rich record of Permian insects and its beddings provide evidence for reconstruction of tropical paleoclimates of the Icehouse Permian with the ability in cases to measure the passage of seasons. Tens of thousands of insect fossil recovered from the Wellington shales are kept in major collections at the Harvard Museum of Comparative Zoology and Yale Peabody Museum of Natural History.
The geology of Ohio formed beginning more than one billion years ago in the Proterozoic eon of the Precambrian. The igneous and metamorphic crystalline basement rock is poorly understood except through deep boreholes and does not outcrop at the surface. The basement rock is divided between the Grenville Province and Superior Province. When the Grenville Province crust collided with Proto-North America, it launched the Grenville orogeny, a major mountain building event. The Grenville mountains eroded, filling in rift basins and Ohio was flooded and periodically exposed as dry land throughout the Paleozoic. In addition to marine carbonates such as limestone and dolomite, large deposits of shale and sandstone formed as subsequent mountain building events such as the Taconic orogeny and Acadian orogeny led to additional sediment deposition. Ohio transitioned to dryland conditions in the Pennsylvanian, forming large coal swamps and the region has been dryland ever since. Until the Pleistocene glaciations erased these features, the landscape was cut with deep stream valleys, which scoured away hundreds of meters of rock leaving little trace of geologic history in the Mesozoic and Cenozoic.
This timeline of eurypterid research is a chronologically ordered list of important fossil discoveries, controversies of interpretation, and taxonomic revisions of eurypterids, a group of extinct aquatic arthropods closely related to modern arachnids and horseshoe crabs that lived during the Paleozoic Era.
The Bertie Group or Bertie Limestone, also referred to as the Bertie Dolomite and the Bertie Formation, is an upper Silurian geologic group and Lagerstätte in southern Ontario, Canada, and western New York State, United States. Details of the type locality and of stratigraphic nomenclature for this unit as used by the U.S. Geological Survey are available on-line at the National Geologic Map Database. The formation comprises dolomites, limestones and shales and reaches a thickness of 495 feet (151 m) in the subsurface, while in outcrop the group can be 60 feet (18 m) thick.