Catoctin Formation

Last updated
Catoctin Formation
Stratigraphic range: Ediacaran
Chimney rock catoctin.JPG
Type Formation
UnderliesChilhowee Group
OverliesBasement Rock
Thickness100-400 Feet
Location
RegionVirginia, Maryland, and Pennsylvania
Country United States
Type section
Named forIts exposure on Catoctin Mountain
Named byArthur Keith
CatoctinFormationMap2.pdf
Geological Map of the Catoctin Formation shown in blue and other formations associated with it.

The Catoctin Formation is a geologic formation that expands through Virginia, Maryland, and Pennsylvania. [1] It dates back to the Precambrian and is closely associated with the Harpers Formation, Weverton Formation, and the Loudoun Formation. [1] The Catoctin Formation lies over a granitic basement rock and below the Chilhowee Group [1] making it only exposed on the outer parts of the Blue Ridge. [2] The Catoctin Formation contains metabasalt, metarhyolite, [3] and porphyritic rocks, columnar jointing, low-dipping primary joints, amygdules, sedimentary dikes, and flow breccias. [4] Evidence for past volcanic activity includes columnar basalts and greenstone dikes.

Contents

Stratigraphy

Stratigraphy of the Catoctin Formation is closely related to the Harpers Formation, Weverton Formation, and the Loudon Formation. [5]

The Harpers Formation is part of the Chilhowee Group. This formation is found above the Weverton Formation and is around 2000–2750 feet in thickness. This formation contains gray phyllite and slate which can be found with banded quartz throughout the rock. It varies in thickness throughout the area and has folds such as anticlines that cause the formation to repeat on itself. Lots of cleavages can also be found throughout which causes the beading to break apart easily. [5]

The Weverton Formation is part of the Chilhowee Group. This formation is found below the Harpers Formation and above the Loudon Formation and is around 1250 feet in thickness. This formation has lots of beds and layers of different types of rock throughout the formation. Different colors, such as gray and purple, and textures, such as vitreous and granular, of quartzite, can be found. Cross-bedded in the quartzite layers is conglomerate layers. White quartzite layers and shale beds between those layers can be found in many different layers. [5]

The Loudon Formation is Part of the Chilhowee Group. This formation is found below the Weverton formation and above the Catoctin Formation and is around 150–450 feet in thickness. This formation contains iron oxide, dark, phyllite along thin beds of arkosic quartzite and layers of conglomerate rock. Also contains layers of the matrix that contains blue and green slate as well as a conglomerate with quartz pebbles. [5]

The Catoctin Formation found under the Chilhowee Group and above the basement rock(1.2-1.0 Ga) and is around 100–400 feet in thickness. Unconformities can be found between the Catoctin Formation and the Laudon Formation as well as between the Catoctin Formation and the basement rock. This formation has metabasalts and metarhyolite as result of metamorphism. The metabasalts can also be seen paired with amygdalar layers and quartz, calcite, and epidote. The metarhyolite is seen with breccia and purple slate. Hornblende-calcite schist and greenstone are found folded and altered in the Catoctin Formation. The Basement Rock lays under all of the other rock formations and has an unconformity between it and the Catoctin Formation. The basement rock contains granite, anorthosite, quartz monzonite, syenite, and para-gneiss. [5]

Notable features

Many different types of features can be found throughout the Catoctin Formation. These features include columnar jointing, low-dipping joints, amygdules, sedimentary dikes, flow breccias, dikes of greenstone, and purple volcanic slate. [1]

Structural features

Columnar Jointing in the Catoctin Formation Columnar Jointing in the Catoctin Formation.jpg
Columnar Jointing in the Catoctin Formation

Columnar jointing

Some columnar jointing is well preserved in the Catoctin Formation but most of it shows harsh columnar jointing. The well-preserved columnar jointing up to 20 feet tall and 1 foot in diameter. The harsh columnar jointing is shorter in height and can have a diameter of 2 to 3 feet. Most columnar jointing is parallel but some have a curved or random orientation. [1]

Deformation can also be seen in the columnar jointing that is found within this formation. Columnar jointing that was originally perpendicular to the field now lies at an angle above the surface. Most columnar jointing is plunging to the south or south-east with some at an angle of 50° from original orientation. [1]

Low-dipping primary joints

There are very low dipping joints which can give the formation a steep look. These low-dipping joints are associated with flow surfaces and can be used to determine attitude. This relationship is best seen at the top of flows compared to farther down the flow. [1]

Volcanic features

Greenstone dikes found through the Catoctin Formation Greenstone dikes in basement rocks.jpg
Greenstone dikes found through the Catoctin Formation

Dikes of greenstone

Dikes of greenstone as wide as 50 feet can be found cutting across the Catoctin Formation. These dikes of greenstone are made up of pyroxene and plagioclase with chlorite and small amounts of calcite, quartz, and epidote. Many of these dikes found in the formation have columnar jointing, faint cleavage, and are fine grained. Most of these dikes are also less durable to weathering and have a dip between 65° East and 65° West. [4]

Purple volcanic slate

Purple volcanic slate can be found as a thin layer of purple, red, or brown slate that separates the Chilhowee Group and the Catoctin Formation. The slate has an average thickness of 50 to 100 feet and rests on top of the greenstone which suggests that it is younger than the greenstone, although this is debated. When placed under a microscope the rock shows original plagioclase that has been replaced with sericite and some darker opaque material. Also found throughout the rock are spots of green chlorite and crystals of sphene which are common in the rock. [4]

Sedimentary features

Flow breccias

Two common breccias can be found in the Catoctin Formation, one is epidote-amygdaloid breccia and the other is mud-lump breccia. The epidote-amygdaloid breccia pieces of are in a matrix of quartz and epidote. Mud-lump breccia has pieces of paleosol with a quartz filling. Both breccias contain angular fragments, with the epidote-amygdaloid having some slightly round pieces and the mud-lump having sub-angular pieces. [1]

Sedimentary dikes

Sedimentary dikes are found in the Catoctin Formation that interacts with the greenstone in a complex way. The sedimentary dikes are found to be about 3 inches in width and have sediment that is the result of overlying the lava flow. Other sedimentary dikes can be found at the base of flows that lead into the greenstone through a series of veins. These dikes are the result of lava flow over wet sediments, the steam pressure then forced the sediments up through cracks resulting in the modern-day dikes. Greenstone that is closer to the sedimentary dike is darker and has finer grains, greenstone that is further away is lighter and has coarser grains. The greenstone that is darker and finer is where glass started forming due to the high temperatures from lava that came in contact with the sediments. [4]

Mineralogical features

Amygdules found in Greenstone Amygdules in Greenstone in the Catoctin Formation.jpg
Amygdules found in Greenstone

Amygdules

Amygdules found in the greenstone of the Catoctin Formation are filled with quartz, epidote, albite, calcite, and chlorite. These minerals can occur by themselves or with other minerals. Epidote, quartz, and albite will usually occur together within lots of amygdules, chlorite and albite will also form together with albite forming on the rim and chlorite in the center. Amygdules are usually found in areas that are rich with other amygdules. They have an oval shape that has more round upper surfaces and longer bottoms parallel to jointing. [4]

Petrology and mineralogy

The Catoctin Formation is mostly fine grained and has a massive structure in most places except where it is slaty or mylonitic. Throughout the formation, there is quartz, feldspar, and epidote that come in the forms of veins and masses. Chlorite will obscure these veins in places where foliation and deformation have happened. [2]

Catoctin hydrothermal alteration throughout the formation tends to be fine-grained but there are some places where clasts of feldspar have grown large and taken over most of the rock. Amygdules in the formation are usually elliptical and contain quartz, feldspar, and epidote mainly but also can contain hematite, chlorite, chalcopyrite, malachite, and zeolite. Hand specimens have found epidote and chlorite, with epidote appearing the most in rocks. [2]

Catoctin rock has shown quartz, andesine, and orthoclase to be primary minerals. All of the feldspars have undergone alteration, the orthoclase forms tiny anhedral grains, and quartz forms small grains that are associated with secondary grains. Small grains of hornblende and pyroxene are also found where the pyroxene is associated with biotite. [2]

Volcanic rocks

Columnar jointing in the Catoctin Formation Fine-grained greenstone is found throughout the Catoctin Formation and commonly has lineation in it. The greenstone also has amygdules that are elongated parallel to cleavage planes and thinner perpendicular to cleavage planes. Places with lots of amygdules are inferred to be old flow tops. Lots of minerals that are found in the matrix of Catoctin rocks show evidence of shearing, where greenstones don't show any evidence of shearing indicates that it is not original lava. Altered pyroxene in rocks indicates granular crystals or basaltic glass texture found filling the spaces between plagioclase. [6]

Structure and deformation

The Catoctin Formation has porphyritic flows and sedimentary members that can be found north of Rose River and have a slight dip direction to the south-east. To the west part of the Catoctin Formation is an eroded surface can be found that has up to 150 feet of sedimentary rocks at the base of the formation, to the east of the formation is a steep fault cuts off the formation. Two primary faults can be found from Hawksbill Gap to Cedar Run and through Franklin Cliffs to Rose River. Near Tanners Ridge, a gradual anticline can be seen in the Catoctin Formation. The top of Chapman Mountain contains sedimentary rocks that belong to the Chilhowee Group, just below those rocks are 50–150 feet of volcanic slate that belongs to the Catoctin Formation. Large greenstone dikes can be found all through the formation particularly at the Big Meadows area where a 1,800-foot section of greenstone is exposed. Throughout the areas, cleavage strikes to the north and dips to the east and lineation that plunges east of southeast. [4]

Four major deformation events took place after the emplacement of the formation in the Precambrian. The burial of the formation occurred between 550 million years ago to 430 million years ago. Neoacadian Orogeny at 375 Ma occurred which caused deformation and metamorphism to the Catoctin Formation. Around 300 million years ago, after the cooling of the Catoctin Formation, a thrust fault cut across the formation. The last big deformation event came from Atlantic rifting that lead to fracturing within the Catoctin Formation around 200 million years ago. [6] Erosion of the Catoctin Formation continuous to happen as it is exposed to different forms of weathering.

Sedimentology

Sediments found at the base of the formation are poorly sorted rocks that contain arkoses, conglomerates, and graywackes. Arkosic sediments and phyllites are where the sediment is thinner, conglomerates and graywackes are usually in thicker areas. Arkosic sediments have angular to sub-rounded grains that have very little matrix made up of epidote in between grains of quartz and feldspar. Conglomerates contain small amounts of greenstone and phyllite with pebbles of cobbles of quartz. Graywackes have a bigger matrix, made up of sericite and chlorite, compared to arkosic rocks, making up 20-50% of the rock. The graywackes contain quartz and feldspar in angular to sub-rounded sediments.

The bottom of the Catoctin Formation in other places shows a much larger accumulation of sediments such as the ones found near the head of Hawksbill Creek where the rocks are around 100 feet thick. Sedimentary rocks found here is graywackes, phyllites, and argillites. The argillite found in this area is finely laminated and interbedded in the other rock layers, it can be seen going upward from a layer of coarse sandstone to a layer of dark argillite.

Many places in the Catoctin Formation contain unknown sediments at the base of the formation. Graywackes and metamorphosed gneiss are seen in the sedimentary rocks at the base of the formation. These graywackes and gneiss contain angular grains are quartz and feldspar can be found in the gneiss with a matrix of chlorite and sericite. Farther below the metamorphosed gneiss contains more large quartz and feldspar with little matrix. [1]

Related Research Articles

<span class="mw-page-title-main">Schist</span> Easily split medium-grained metamorphic rock

Schist is a medium-grained metamorphic rock showing pronounced schistosity. This means that the rock is composed of mineral grains easily seen with a low-power hand lens, oriented in such a way that the rock is easily split into thin flakes or plates. This texture reflects a high content of platy minerals, such as mica, talc, chlorite, or graphite. These are often interleaved with more granular minerals, such as feldspar or quartz.

<span class="mw-page-title-main">Sedimentary rock</span> Rock formed by the deposition and cementation of particles

Sedimentary rocks are types of rock that are formed by the accumulation or deposition of mineral or organic particles at Earth's surface, followed by cementation. Sedimentation is the collective name for processes that cause these particles to settle in place. The particles that form a sedimentary rock are called sediment, and may be composed of geological detritus (minerals) or biological detritus. The geological detritus originated from weathering and erosion of existing rocks, or from the solidification of molten lava blobs erupted by volcanoes. The geological detritus is transported to the place of deposition by water, wind, ice or mass movement, which are called agents of denudation. Biological detritus was formed by bodies and parts of dead aquatic organisms, as well as their fecal mass, suspended in water and slowly piling up on the floor of water bodies. Sedimentation may also occur as dissolved minerals precipitate from water solution.

<span class="mw-page-title-main">Greywacke</span> Sandstone with angular grains in a clay-fine matrix

Greywacke or graywacke is a variety of sandstone generally characterized by its hardness, dark color, and poorly sorted angular grains of quartz, feldspar, and small rock fragments or sand-size lithic fragments set in a compact, clay-fine matrix. It is a texturally immature sedimentary rock generally found in Paleozoic strata. The larger grains can be sand- to gravel-sized, and matrix materials generally constitute more than 15% of the rock by volume.

<span class="mw-page-title-main">Hornfels</span>

Hornfels is the group name for a set of contact metamorphic rocks that have been baked and hardened by the heat of intrusive igneous masses and have been rendered massive, hard, splintery, and in some cases exceedingly tough and durable. These properties are caused by fine grained non-aligned crystals with platy or prismatic habits, characteristic of metamorphism at high temperature but without accompanying deformation. The term is derived from the German word Hornfels, meaning "hornstone", because of its exceptional toughness and texture both reminiscent of animal horns. These rocks were referred to by miners in northern England as whetstones.

<span class="mw-page-title-main">Greenschist</span> Metamorphic rock

Greenschists are metamorphic rocks that formed under the lowest temperatures and pressures usually produced by regional metamorphism, typically 300–450 °C (570–840 °F) and 2–10 kilobars (29,000–145,000 psi). Greenschists commonly have an abundance of green minerals such as chlorite, serpentine, and epidote, and platy minerals such as muscovite and platy serpentine. The platiness gives the rock schistosity. Other common minerals include quartz, orthoclase, talc, carbonate minerals and amphibole (actinolite).

<span class="mw-page-title-main">Quartz-porphyry</span> Type of volcanic rock containing large porphyritic crystals of quartz

Quartz-porphyry, in layman's terms, is a type of volcanic (igneous) rock containing large porphyritic crystals of quartz. These rocks are classified as hemi-crystalline acid rocks.

<span class="mw-page-title-main">Geology of the Australian Capital Territory</span> Overview of the geology of the Australian Capital Territory

The geology of the Australian Capital Territory includes rocks dating from the Ordovician around 480 million years ago, whilst most rocks are from the Silurian. During the Ordovician period the region—along with most of eastern Australia—was part of the ocean floor. The area contains the Pittman Formation consisting largely of quartz-rich sandstone, siltstone and shale; the Adaminaby Beds and the Acton Shale.

<span class="mw-page-title-main">Mudrock</span> Type of sedimentary rock

Mudrocks are a class of fine-grained siliciclastic sedimentary rocks. The varying types of mudrocks include siltstone, claystone, mudstone, slate, and shale. Most of the particles of which the stone is composed are less than 116 mm and are too small to study readily in the field. At first sight, the rock types appear quite similar; however, there are important differences in composition and nomenclature.

<span class="mw-page-title-main">Clastic rock</span> Sedimentary rocks made of mineral or rock fragments

Clastic rocks are composed of fragments, or clasts, of pre-existing minerals and rock. A clast is a fragment of geological detritus, chunks, and smaller grains of rock broken off other rocks by physical weathering. Geologists use the term clastic to refer to sedimentary rocks and particles in sediment transport, whether in suspension or as bed load, and in sediment deposits.

<span class="mw-page-title-main">Temagami Greenstone Belt</span> Greenstone belt in Northeastern Ontario, Canada

The Temagami Greenstone Belt (TGB) is a small 2.7 billion year old greenstone belt in the Temagami region of Northeastern Ontario, Canada. It represents a feature of the Superior craton, an ancient and stable part of the Earth's lithosphere that forms the core of the North American continent and Canadian Shield. The belt is composed of metamorphosed volcanic rocks that range in composition from basalt to rhyolite. These form the east-northeast trend of the belt and are overlain by metamorphosed sedimentary rocks. They were created during several volcanic episodes involving a variety of eruptive styles ranging from passive lava eruptions to viscous explosive eruptions.

<span class="mw-page-title-main">Metamorphic facies</span> Set of mineral assemblages in metamorphic rocks formed under similar pressures and temperatures

A metamorphic facies is a set of mineral assemblages in metamorphic rocks formed under similar pressures and temperatures. The assemblage is typical of what is formed in conditions corresponding to an area on the two dimensional graph of temperature vs. pressure. Rocks which contain certain minerals can therefore be linked to certain tectonic settings, times and places in the geological history of the area. The boundaries between facies are wide because they are gradational and approximate. The area on the graph corresponding to rock formation at the lowest values of temperature and pressure is the range of formation of sedimentary rocks, as opposed to metamorphic rocks, in a process called diagenesis.

This glossary of geology is a list of definitions of terms and concepts relevant to geology, its sub-disciplines, and related fields. For other terms related to the Earth sciences, see Glossary of geography terms.

<span class="mw-page-title-main">Geology of Jersey</span>

The geology of Jersey is characterised by the Late Proterozoic Brioverian volcanics, the Cadomian Orogeny, and only small signs of later deposits from the Cambrian and Quaternary periods. The kind of rocks go from conglomerate to shale, volcanic, intrusive and plutonic igneous rocks of many compositions, and metamorphic rocks as well, thus including most major types.

The Piégut-Pluviers Granodiorite is situated at the northwestern edge of the Variscan Massif Central in France. Its cooling age has been determined as 325 ± 14 million years BP.

<span class="mw-page-title-main">Geology of Taiwan</span>

The island of Taiwan was formed approximately 4 to 5 million years ago at a convergent boundary between the Philippine Sea Plate and the Eurasian Plate. In a boundary running the length of the island and continuing southwards, the Eurasian Plate is sliding under the Philippine Sea Plate. In the northeast of the island, the Philippine Sea Plate slides under the Eurasian Plate. Most of the island comprises a huge fault block tilted to the west.

<span class="mw-page-title-main">Geology of the Democratic Republic of the Congo</span>

The geology of the Democratic Republic of the Congo is extremely old, on the order of several billion years for many rocks. The country spans the Congo Craton: a stable section of ancient continental crust, deformed and influenced by several different mountain building orogeny events, sedimentation, volcanism and the geologically recent effects of the East Africa Rift System in the east. The country's complicated tectonic past have yielded large deposits of gold, diamonds, coltan and other valuable minerals.

The geology of Mozambique is primarily extremely old Precambrian metamorphic and igneous crystalline basement rock, formed in the Archean and Proterozoic, in some cases more than two billion years ago. Mozambique contains greenstone belts and spans the Zimbabwe Craton, a section of ancient stable crust. The region was impacted by major tectonic events, such as the mountain building Irumide orogeny, Pan-African orogeny and the Snowball Earth glaciation. Large basins that formed in the last half-billion years have filled with extensive continental and marine sedimentary rocks, including rocks of the extensive Karoo Supergroup which exist across Southern Africa. In some cases these units are capped by volcanic rocks. As a result of its complex and ancient geology, Mozambique has deposits of iron, coal, gold, mineral sands, bauxite, copper and other natural resources.

<span class="mw-page-title-main">Geology of Virginia</span>

The geology of Virginia began to form 1.8 billion years ago and potentially even earlier. The oldest rocks in the state were metamorphosed during the Grenville orogeny, a mountain building event beginning 1.2 billion years ago in the Proterozoic, which obscured older rocks. Throughout the Proterozoic and Paleozoic, Virginia experienced igneous intrusions, carbonate and sandstone deposition, and a series of other mountain building events which defined the terrain of the inland parts of the state. The closing of the Iapetus Ocean, to form the supercontinent Pangaea added additional small landmasses, some of which are now hidden beneath thick Atlantic Coastal Plain sediments. The region subsequently experienced the rifting open of the Atlantic Ocean in the Mesozoic, the development of the Coastal Plain, isolated volcanism and a series of marine transgressions that flooded much of the area. Virginia has extensive coal, deposits of oil and natural gas, as well as deposits of other minerals and metals, including vermiculite, kyanite and uranium.

<span class="mw-page-title-main">Lilesville Granite</span> Body of granitic rock

The Lilesville Granite, also referred to as the Lilesville pluton, is a ring-shaped body of granitic rock that spans about 94 square miles (240 km2) in Anson, Richmond, and Montgomery Counties in southern North Carolina.

References

  1. 1 2 3 4 5 6 7 8 9 Reed, John C. (1955-07-01). "Catoctin Formation Near Luray, Virginia". GSA Bulletin. 66 (7): 871–896. doi:10.1130/0016-7606(1955)66[871:CFNLV]2.0.CO;2. ISSN   0016-7606 via GeoScienceWorld.
  2. 1 2 3 4 Bloomer, Robert O.; Bloomer, Richard R. (1947-03-01). "The Catoctin Formation in Central Virginia". The Journal of Geology. 55 (2): 94–106. doi:10.1086/625404. ISSN   0022-1376. S2CID   129699878.
  3. Thurmont, Mailing Address: 6602 Foxville Road; Us, MD 21788 Phone:663-9388 Contact. "Geology - Catoctin Mountain Park (U.S. National Park Service)". www.nps.gov. Retrieved 2021-04-13.{{cite web}}: CS1 maint: numeric names: authors list (link)
  4. 1 2 3 4 5 6 "USGS: Geological Survey Bulletin 1265 (Catoctin Formation)". www.nps.gov. Retrieved 2021-04-13.
  5. 1 2 3 4 5 Spitzer, Robert; Advisor: Clifford, P. M. (April 1979). "Structural Analysis and Microstructural Examination of the Catoctin Formation in the South Mountain Anticline, Maryland". McMaster University via MacSphere.{{cite journal}}: |last2= has generic name (help)
  6. 1 2 Lang, Katherine (2018-04-01). "Kinematics of Brittle and Ductile Deformation in the Catoctin Formation near Rockfish Gap, Virginia". Undergraduate Honors Theses.