Cleveland Shale | |
---|---|
Stratigraphic range: Famennian ~ | |
![]() Cleveland Shale (below) and Berea Sandstone of the Bedford Formation at the Great Falls of Tinkers Creek near Bedford, Ohio | |
Type | Formation |
Unit of | Ohio Shale |
Underlies | Bedford Shale |
Overlies | Chagrin Shale |
Lithology | |
Primary | Shale |
Other | Pyrite |
Location | |
Coordinates | 39°24′N83°36′W / 39.4°N 83.6°W |
Approximate paleocoordinates | 31°18′S32°12′W / 31.3°S 32.2°W |
Region | ![]() |
Country | ![]() |
Type section | |
Named for | Cleveland, Ohio |
Named by | John Strong Newberry |
Year defined | 1870 |
The Cleveland Shale, also referred to as the Cleveland Member of the Ohio Shale, is a Late Devonian (Famennian) shale geologic formation in the eastern United States.
The Cleveland Shale was identified in 1870 and named for the city of Cleveland, Ohio. John Strong Newberry, director of the Ohio State Geological Survey, first identified the formation in 1870. [1] He called it the "Cleveland Shale" and designated its type locality at Doan Brook [2] near Cleveland. [1] Details of the type locality and of stratigraphic nomenclature for this unit as used by the U.S. Geological Survey are available on-line at the National Geologic Map Database. [3]
The primary minerals in the Cleveland Shale are chlorite, illite, pyrite, and quartz. [4] [a] Underground, the Cleveland Shale is black, [5] [6] [7] [8] dull grayish-black, [9] bluish-black, or brownish-black [4] in color. In exposed outcrops, it weathers to red, [9] reddish-brown, [2] or medium brown. [4] Highly weathered rock turns gray. [2] [4] It is fairly fissile, [6] [5] [7] breaking into thin, irregularly shaped sheets [10] or flakes [4] that occasionally display crystals of pickeringite. [2] Relieved of stress once exposed, the Cleveland Shale is nonplastic [4] and can appear as if fragmented into blocks due to jointing. [5]
There is a sharp and clear distinction between the Cleveland Shale and underlying Chagrin Shale. [2] [10] At the very bottom of the Cleveland Shale there is a thin, discontinuous layer of pyrite. [5] [b] This pyrite layer is discontinuous because after this rock was laid down, it was eroded. The erosion increases as one moves south along the valley of the Cuyahoga River and east to the Grand River. [7] Portions of the pyrite layer, known as Skinner's Run Bed, [7] contain fragments of petrified wood and fossilized fish bones worn smooth by the action of water. [5] Above the pyrite layer, a limestone layer is found in west-central (but not eastern) Ohio. [9]
The remainder of the Cleveland Shale generally consists of a relatively hard, [9] [c] organic rich [12] oil shale. [4] [8] It has both an upper and lower part. [9]
A clay shale, [9] described as bluish or bluish-gray [9] and as olive-black to brownish-black, [13] forms the lower part. The lower part can be anywhere from a few inches to several feet in thickness. This layer is sometimes referred to as the Olmstead shale. This layer has been dated to between 362.6 and 361.0 million years old based on conodont biozones (Bispathodus aculeatus aculeatus to Bispathodus ultimus ultimus zones). [14] [15] Thin beds of gray or brown siltstone, lumps of pyrite, and layers of silica-heavy limestone with cone-in-cone structures are found in the lower part. In eastern Ohio, thin gray veins ("stringers") of siltstone appear. [9] In western Ohio, [8] the Cleveland Shale appears to interbed with the Chagrin Shale below it, erasing the clear boundary between the two rock formations. [9]
The upper part of the Cleveland Shale is a black to brownish black [13] silty shale [9] with occasional thin beds of gray shale and siltstone. [5] The upper part is much richer in petroleum [16] and kerogen. [4] [d] When broken open, fresh samples smell like crude oil. [4] Where the upper part is thick, [7] and particularly in northeast Ohio, [10] the shale has a distinctive "rippled" appearance. [7] The upper 10 feet (3.0 m) of the Cleveland Shale contains abundant nodules of phosphate, nodules and bands (extremely thin beds) of pyrite, bands of calcisiltite, and lamination. [13] Almost no concretions are found in the upper part. [4]
The Cleveland Shale is a shale geologic formation in Ohio in the United States. The Cleveland Shale underlies much of northeast Ohio in beds of varying thickness.
In northeast Ohio, the member does not appear east of the Grand River. [7] Measurements taken in northeast Ohio show the Cleveland Shale to be 7 feet (2.1 m) [7] to 100 feet (30 m) thick. [9] It is thickest around the Rocky River north of Berea, Ohio, and thins to the east, west, and south. [9]
The Cleveland Shale is found in east-central Kentucky. In east-central Kentucky, the Cleveland Shale is more uniform in thickness, ranging from 41.4 to 50.1 feet (12.6 to 15.3 m), and increases in thickness toward the east. [13]
The unit is also present in West Virginia [17] and in southwest Virginia, [18] where it is mapped as the Cleveland Member of the Ohio Shale.
The Cleveland Shale (or Cleveland Member) is a sub-unit of the Ohio Shale Formation. [7] [19] The Chagrin Shale underlies the Cleveland Shale. [20] The Bedford Shale generally overlies the Cleveland Shale, with a sharp distinction between the two. In west-central Ohio, more than 150 feet (46 m) of Bedford Shale may lie above the Cleveland Shale. In places, red and grey shale may intertongue (interlock) with the Cleveland Shale extensively. In far eastern Ohio, the Bedford Shale thins by more than 125 feet (38 m). Where the Cussewago Shale is also present, the Bedford Shale is usually less than 25 feet (7.6 m) and may be locally absent. In some areas, the Cleveland Shale is described as overstepped [7] or unconformably overlaid gradationally by Berea Siltstone and sharply by Berea Sandstone. [10]
It is the regional equivalent of the Hangenberg Black Shale and the Bakken Shale. [21]
Exceptional marine animal fossils are found in the formation. The Cleveland Shale is generally considered to be fossil-poor, but there are exceptions. The basal pyrite layer contains petrified wood and fossilized fish bones. [5] The lower part is famous for its extensive and well-preserved fossil Chondrichthyans (including Cladoselache ), Conodonts, Placodermi, [7] [5] and palaeoniscinoids ray-finned fishes. [22] The giant predatory placoderms Dunkleosteus terrelli, Gorgonichthys clarki , Gymnotrachelus hydei , Heintzichthys gouldii , and five subspecies (including the type specimen) of Titanichthys were all discovered in the Cleveland Shale. [23] The Cleveland Shale is classified as a konservatte-lagerstatten, which means it often preserves complete body fossils. Typical early shark preservation includes soft tissue outlines and impressions, fin rays, gill musculature, cartilage, and stomach contents. [24] Placoderms in the Cleveland Shale typically do not show any good soft-tissue preservation. [25]
Faunal list follows Carr and Jackson (2008) [26] and Carr (2018). [27]
All placoderms in the Cleveland Shale are arthrodires. [28]
Genus | Species | Notes | Images |
---|---|---|---|
Bungartius [29] | B. perissus [29] | A medium-sized mylostomatid with a relatively low and narrow skull and a presumably durophagous diet. [30] | ![]() |
Callognathus | C. regularis | A rare possible selenosteid based on small jaw plates. [28] | |
"Coccosteus" | "C." cuyahogae | A rare coccosteomorph of uncertain affinities, based on a single jaw plate. Not necessarily a close relative of more complete and better-described species of Coccosteus. [28] | |
Diplognathus | D. mirabilis | A somewhat large aspinothoracid with narrow serrated jaws. | ![]() |
Dunkleosteus | D. terrelli | A very large dunkleosteid with a massive bite force and an apex predator niche. The most famous placoderm in general, as well as one of the largest and most common fish in the Cleveland Shale. Previously considered a species of Dinichthys . | ![]() |
Glyptaspis | G. verrucosa | A rare arthrodire of uncertain affinities, known from a few roughly-textured belly plates. | |
Gorgonichthys | G. clarki | A very large aspinothoracid, similar in size and ecology to Dunkleosteus. Previously considered a species of Dinichthys. | ![]() |
Gymnotrachelus | G. hydei | A selenosteid with a low, broad skull and small tooth-like denticles along the jaw. [31] | ![]() |
Heintzichthys | H. gouldii | An aspinothoracid with a boxy skull. [32] Previously considered a species of Dinichthys. | ![]() |
Hlavinichthys [27] | H. jacksoni [27] | An aspinothoracid. [27] | |
Holdenius | H. holdeni | An aspinothoracid similar to Heintzichthys, though with a deeper jaw. [28] | |
Hussakofia | H. minor | A small dunkleosteid with a very short, deep jaw. | |
Mylostoma | M. eurhinus | A mylostomatid with a very broad skull. | |
M. newberryi | |||
M. variabile | |||
Paramylostoma | P. arcualis | A small selenosteid with a narrow skull. | |
Selenosteus | S. brevis | A small selenosteid with a broad skull. | |
Stenosteus | S. angustopectus [33] | A small selenosteid similar to Selenosteus, with a broad skull. [33] | |
S. glaber | |||
Titanichthys | T. agassizi | A very large filter-feeding mylostomatid based on multiple species, some of which may be synonyms. [28] [34] [30] The second most common placoderm in the Cleveland Shale after Dunkleosteus terrelli. Titanichthys hussakofi was formerly known as Brontichthys clarki. [28] | ![]() |
T. attenuatus | |||
T. clarkii | |||
T. hussakofi | |||
T. rectus | |||
Trachosteus | T. clarki | A rare possible selenosteid known from a few armor fragments. |
Other undescribed chondrichthyans (cartilaginous fish) from the Cleveland Shale include a cladoselachian, a cochliodont, a eugeneodont, a hybodont, stethacanthids (including a new species of Stethacanthus), Sphenacanthus , and several additional forms represented by unique head and fin spines. [26] A conference abstract by Hlavin (1972) briefly mentioned associated assemblages of teeth (Orodus sp.) and fin spines (Ctenacanthus vetustus); [35] Zangerl (1981) suggested that each assemblage represented an early hybodont with Orodus-like teeth and ctenacanth-like spines. [36]
Genus | Species | Notes | Images |
---|---|---|---|
Cladoselache | C. acanthopterygius | A common shark-like predator with large eyes, cladodont teeth, a broad mouth at the front of the head, a robust dorsal fin spine, a streamlined body, and a tall caudal fin with wide keels on the tail stalk. Ecologically similar to mako sharks, though not closely related to any modern shark. Potentially a symmoriiform (close to Stethacanthus) and/or an early holocephalan (distantly related to modern chimaeras). [37] Many Cladoselache species have been named based primarily on subtle variation in fin structure, [38] though some will likely turn out to be invalid or synonymous upon reinvestigation. [36] The two most frequently mentioned species are C. fyleri (the type species, which is rather small) and C. kepleri (a larger species). [38] [39] | ![]() |
C. brachypterygius | |||
C. clarki | |||
C. desmopterygius | |||
C. eastmani | |||
C. fyleri | |||
C. kepleri | |||
C. magnificus | |||
C. newberryi | |||
C. pachypterygius | |||
Ctenacanthus | C. concinnus | A ctenacanthiform shark with many named species, some of which appear to be synonymous with others. Some ctenacanth species named from the Cleveland Shale are based on fin spines (C. compressus, C. clarki, C. vetustus), while others (C. concinnus, C. terrelli, C. tumidus) are based on cladodont teeth. Specimens preserving both teeth and fin spines demonstrate that C. concinnus, C. compressus, and C. clarki are probably all the same species, with C. concinnus taking priority. [39] As a result, C. concinnus is regarded as the Cleveland Shale ctenacanth with the best-preserved specimens (formerly referred to the spine-based species). [38] [40] [39] C. tumidus may be the largest shark in the formation based on the size of its teeth. [39] | ![]() |
C. terrelli [41] | |||
C. tumidus [41] | |||
C. vetustus? | |||
Diademodus [42] | D. hydei [42] | A possible phoebodontid [39] with a distinct rostrum, small fins, and minute many-cusped teeth. [42] | ![]() |
Monocladodus [43] | M. clarki | A cladoselachid very similar to Cladoselache. Primarily distinguished by some of its cladodont teeth being single-cusped, though multi-cusped teeth are also present in the jaw. There is disagreement over whether it should be treated as a valid distinct genus [43] [36] or not. [38] [39] | |
Orodus | O. spp. (x3) | At least three undescribed species of orodontids known from broad crushing teeth. [39] Complete Orodus specimens from Late Carboniferous Indiana have a long body and small fins. [36] | ![]() |
Phoebodus | P. politus [41] | A phoebodontid known from small teeth with three main cusps. [41] [39] Complete Phoebodus specimens from Late Devonian Morocco are similar in proportion to modern frilled sharks. [44] | ![]() |
Stethacanthus | S. altonensis | A stethacanthid symmoriiform with cladodont teeth, extensive denticles on the head and an unusual "spine-brush complex". [45] [39] | ![]() |
S. carinatus | |||
Tamiobatis | T. vetustus | A ctenacanthiform shark preserving both skull cartilage and cladodont teeth. [46] |
Other undescribed osteichthyans (bony fish) from the Cleveland Shale include a new species of Kentuckia and an unnamed Mesopoma -like palaeoniscoid. [47] [26]
Genus | Species | Notes |
---|---|---|
Kentuckia | K. hlavini | A palaeonisciform actinopterygian (ray-finned fish). |
Proceratodus | P. wagneri | A lungfish. The only sarcopterygian (lobe-finned fish) currently recorded from the Cleveland Member. |
Tegeolepis | T. clarki | A palaeonisciform actinopterygian. |
The Cleveland Shale is approximately 362.6 to 360.1 million years old, daing to the very latest part of the Devonian period, the Famennian, [14] based on biostratigraphy from conodonts [15] and plant spores. [48] The Cleveland Shale extends all the way to the Hangenberg mass extinction that ended the Devonian but does not reach the very end of the Devonian period. Unlike the Permian-Triassic extinction and Cretaceous-Paleogene extinction the Devonian-Carboniferous boundary does not correlate with the mass extinction event at the end of this period. The Bedford Shale and Berea Sandstone represent Devonian layers that post-date the Devonian-Carboniferous extinction but were deposited on top of the Cleveland Shale, and encompass some of the recovery fauna otherwise typical of the Carboniferous in the aftermath of the Hangenberg Event. [49]
The upper 2.5 m of the Cleveland Shale has been chemostratigraphically correlated with the Hangenberg Event and the type stratigraphy in Germany, suggesting that the Cleveland Shale preserves the second of the two mass extinction events that together comprise the late Devonian extinction [50]
The Cleveland Shale is likely the regional expression of the Dasberg Event, a major extinction event that occurred near the end of the Devonian period. The Cleveland Shale is interpreted as having accumulated in an anaerobic environment. [6] Evidence exists to suggest that the Cleveland Shale was laid down during the Dasberg event, an Upper Famennian extinction event that devastated land-based flora and marine-based fauna. This led to a significant drop in marine oxygen (an anoxic event) and atmospheric carbon dioxide, and then a brief glaciation. The global environment recovered, only to suffer another extinction, the Hangenberg event, close to the Devonian-Carboniferous boundary. [51] While the Cleveland Shale was being deposited, extensive organic matter from the land was swept into the sea then lying over Ohio. [52] Although there is dispute over how deep this sea was, the Dasberg event meant that oceans could support few to no bottom-dwelling animals. This explains why the Cleveland Shale largely lacks fossils of benthic organisms [53] and has a high carbon content that colors the shale very dark gray to black. [5] [54]
The contact between the Chagrin Shale and Cleveland Shale has been described as interbedding. This feature is interpreted as having been caused when two different depositional environments (in this case, the oxygenated sea which laid down the Chagrin Shale and the anaerobic sea rich in organic matter which laid down the Cleveland Shale) moved repeatedly back and forth over the same area. [9] Geologist Horace R. Collins called the boundary area intercalated, [8] but it is unclear what meaning he intended. [e]
Different hypotheses have been suggested as the cause of the regional, irregular contact between the Cleveland Shale and Bedford Formation. Charles E.B. Conybeare has noted that the Cleveland Shale is siltier in the east and more calcareous in the west. He hypothesized that this indicates that silt flowed into the sea from east to west. Current eroded the Cleveland Shale and then laid down new sediment in the gullies which became the Bedford Formation. [54] Jack C. Pashin and Frank R. Ettensohn proposed a variation on this hypothesis. They note that the region containing the Cleveland Shale was undergoing uplift when the Bedford Formation was being deposited. This likely led to exposure and erosion of the Cleveland Shale, with sediment which became the Bedford Formation filling in these gullies. They also observe that there is evidence of diapirism (the intrusion of deformable Cleveland Shale upward into the more brittle Bedford Formation), as well as intertonguing. [57] Baird et al. note that the Cleveland Shale also tilts downward to the south. They suggest that this caused overstepping, rather than intertonguing. [7]
The high organic content of the Cleveland Shale makes it eminently suitable for the formation of fossil fuels. One 1981 study found that the Cleveland Shale can yield an average of 14 US gallons (53 L; 12 imp gal) of petroleum per 1 short ton (0.91 t) of rock. [58] The Cleveland Shale also contains cannel coal and "true" coal, although neither in great quantity. [4]
The Late Devonian extinction consisted of several extinction events in the Late Devonian Epoch, which collectively represent one of the five largest mass extinction events in the history of life on Earth. The term primarily refers to a major extinction, the Kellwasser event, also known as the Frasnian-Famennian extinction, which occurred around 372 million years ago, at the boundary between the Frasnian age and the Famennian age, the last age in the Devonian Period. Overall, 19% of all families and 50% of all genera became extinct. A second mass extinction called the Hangenberg event, also known as the end-Devonian extinction, occurred 359 million years ago, bringing an end to the Famennian and Devonian, as the world transitioned into the Carboniferous Period.
Dunkleosteus is an extinct genus of large arthrodire ("jointed-neck") fish that existed during the Late Devonian period, about 382–358 million years ago. It was a pelagic fish inhabiting open waters, and one of the first vertebrate apex predators of any ecosystem.
The Famennian is the later of two faunal stages in the Late Devonian epoch. The most recent estimate for its duration is that it lasted from around 371.1 to 359.3 million years ago. An earlier 2012 estimate, still used by the International Commission on Stratigraphy, is that it lasted from 372.15 million years ago to 358.86 million years ago. It was preceded by the Frasnian stage and followed by the Tournaisian stage.
Titanichthys is an extinct genus of giant, aberrant marine placoderm from shallow seas of the Late Devonian of Morocco, Eastern North America, and possibly Europe. Many of the species approached Dunkleosteus in size and build. Unlike its relative, however, the various species of Titanichthys had small, ineffective-looking mouth-plates that lacked a sharp cutting edge. It is assumed that Titanichthys was a filter feeder that used its capacious mouth to swallow or inhale schools of small, anchovy-like fish, or possibly krill-like zooplankton, and that the mouth-plates retained the prey while allowing the water to escape as it closed its mouth. A study has since confirmed this assumption as its jaws are functionally closer to that of filter feeders like baleen whales and basking sharks, and it appears to have developed from benthic durophagists that became pelagic suspension feeders. This would make it the first (known) large-sized vertebrate filter feeder. Titanichthys was estimated to have reached a length of 7–7.6 m (23–25 ft), but Engelman (2023) suggested that Titanichthys was comparable in size to Dunkleosteus, likely measuring about or just over 4.1 metres (13.5 ft) in length.
Dinichthys is an extinct monospecific genus of large marine arthrodire placoderm from the Late Devonian measuring around 3 metres (9.8 ft) long. Fossils were recovered from the Ohio Shale Formation along the Olentangy River in Delaware County, Ohio.
The Hangenberg event, also known as the Hangenberg crisis or end-Devonian extinction, is a mass extinction that occurred at the end of the Famennian stage, the last stage in the Devonian Period. It is usually considered the second-largest extinction in the Devonian Period, having occurred approximately 13 million years after the Late Devonian mass extinction at the Frasnian-Famennian boundary. The event is named after the Hangenberg Shale, which is part of a sequence that straddles the Devonian-Carboniferous boundary in the Rhenish Massif of Germany.
The Marcellus Formation or the Marcellus Shale is a Middle Devonian age unit of sedimentary rock found in eastern North America. Named for a distinctive outcrop near the village of Marcellus, New York, in the United States, it extends throughout much of the Appalachian Basin.
Chagrinia is an extinct genus of prehistoric marine coelacanth which lived during the Late Devonian period.
The Bedford Shale is a shale geologic formation in the states of Ohio, Michigan, Pennsylvania, Kentucky, West Virginia, and Virginia in the United States.
The Exshaw Formation is a stratigraphic unit in the Western Canada Sedimentary Basin. It takes the name from the hamlet of Exshaw, Alberta in the Canadian Rockies, and was first described from outcrops on the banks of Jura Creek north of Exshaw by P.S. Warren in 1937. The formation is of Late Devonian to Early Mississippian age as determined by conodont biostratigraphy, and it straddles the Devonian-Carboniferous boundary.
Holdenius is an extinct genus of arthrodire placoderm fish which lived during the Late Devonian period.
The New Albany Shale is an organic-rich geologic formation of Devonian and Mississippian age in the Illinois Basin of the United States. It is a major source of hydrocarbons.
Berea Sandstone, also known as Berea Grit, is a sandstone formation in the U.S. states of Michigan, Ohio, Pennsylvania, West Virginia, and Kentucky. It is named after Berea, Ohio. The sandstone has been used as a building stone and is a source of oil and gas.
Stenosteus is an extinct monospecific genus of medium-sized selenosteid arthrodire placoderms of the Late Devonian period known from the Upper Famennian Cleveland Shale of Ohio. Estimated skull lengths range from 6 to 9 centimeters Most fossils of Stenosteus have been scraps of armor and portions of tooth-plates suggestive of Selenosteus. In 1996, enough material of a new species, S. angustopectus, was recovered to allow a reconstruction of armor that resembles that of Selenosteus.
The Chagrin Shale is a shale geologic formation in the eastern United States that is approximately 365 million years old. The Chagrin Shale is a gray shale that begins thin and deep underground in north-central Ohio. As it proceeds east, the formation thickens, rises to the surface, and contains greater amounts of siltstone.
The Chattanooga Shale is a geological formation in Alabama, Arkansas, Georgia, Kentucky, Missouri and Tennessee. It preserves conodont fossils dating to the Devonian period. It occurs mostly as a subsurface geologic formation composed of layers of shale. It is located in East Tennessee and also extends into southeastern Kentucky, northwestern Georgia, and northern Alabama. This part of Alabama is part of the Black Warrior Basin.
The Kettle Point Formation, also known as the Kettle Point (black) Shale, is a geologic formation that consists of thinly laminated, siliciclastic, organic-rich black shale with thin to thick interbeds of organic-poor mudstone. It is largely restricted to the subsurface of southwestern Ontario.
The Waterloo Farm lagerstätte is a Famennian lagerstätte in South Africa that constitutes the only known record of a near-polar Devonian coastal ecosystem.
Torosteus is an extinct genus of arthrodire placoderm from the Early Frasnian stage of the Late Devonian period. Fossils are found in the Kimberley region of Australia.
The Dasberg Event was a minor extinction event that occurred during the Famennian, the final stage of the Devonian period. It is often considered to be one of the events contributing to the Late Devonian extinction, which is believed by many palaeontologists to have been a protracted event that took place over millions of years.
{{cite journal}}
: CS1 maint: DOI inactive as of November 2024 (link)