Part of a series on |
Machine learning and data mining |
---|
Self-play is a technique for improving the performance of reinforcement learning agents. Intuitively, agents learn to improve their performance by playing "against themselves".
In multi-agent reinforcement learning experiments, researchers try to optimize the performance of a learning agent on a given task, in cooperation or competition with one or more agents. These agents learn by trial-and-error, and researchers may choose to have the learning algorithm play the role of two or more of the different agents. When successfully executed, this technique has a double advantage:
Czarnecki et al [1] argue that most of the games that people play for fun are "Games of Skill", meaning games whose space of all possible strategies looks like a spinning top. In more detail, we can partition the space of strategies into sets , such that any , the strategy beats the strategy . Then, in population-based self-play, if the population is larger than , then the algorithm would converge to the best possible strategy.
Self-play is used by the AlphaZero program to improve its performance in the games of chess, shogi and go. [2]
Self-play is also used to train the Cicero AI system to outperform humans at the game of Diplomacy. The technique is also used in training the DeepNash system to play the game Stratego. [3] [4]
Self-play has been compared to the epistemological concept of tabula rasa that describes the way that humans acquire knowledge from a "blank slate". [5]
Reinforcement learning (RL) is an interdisciplinary area of machine learning and optimal control concerned with how an intelligent agent ought to take actions in a dynamic environment in order to maximize the cumulative reward. Reinforcement learning is one of three basic machine learning paradigms, alongside supervised learning and unsupervised learning.
Q-learning is a model-free reinforcement learning algorithm to learn the value of an action in a particular state. It does not require a model of the environment, and it can handle problems with stochastic transitions and rewards without requiring adaptations.
In probability theory and machine learning, the multi-armed bandit problem is a problem in which a decision maker iteratively selects one of multiple fixed choices when the properties of each choice are only partially known at the time of allocation, and may become better understood as time passes. A fundamental aspect of bandit problems is that choosing an arm does not affect the properties of the arm or other arms.
In the context of quantum mechanics and quantum information theory, symmetric, informationally complete, positive operator-valued measures (SIC-POVMs) are a particular type of generalized measurement (POVM). SIC-POVMs are particularly notable thanks to their defining features of (1) being informationally complete; (2)having the minimal number of outcomes compatible with informational completeness, and (3) being highly symmetric. In this context, informational completeness is the property of a POVM of allowing to fully reconstruct input states from measurement data.
In computer science, Monte Carlo tree search (MCTS) is a heuristic search algorithm for some kinds of decision processes, most notably those employed in software that plays board games. In that context MCTS is used to solve the game tree.
DeepMind Technologies Limited, doing business as Google DeepMind, is a British-American artificial intelligence research laboratory which serves as a subsidiary of Google. Founded in the UK in 2010, it was acquired by Google in 2014. The company is based in London, with research centres in Canada, France, Germany, and the United States.
Adversarial machine learning is the study of the attacks on machine learning algorithms, and of the defenses against such attacks. A survey from May 2020 exposes the fact that practitioners report a dire need for better protecting machine learning systems in industrial applications.
In machine learning, hyperparameter optimization or tuning is the problem of choosing a set of optimal hyperparameters for a learning algorithm. A hyperparameter is a parameter whose value is used to control the learning process.
AlphaGo Zero is a version of DeepMind's Go software AlphaGo. AlphaGo's team published an article in the journal Nature on 19 October 2017, introducing AlphaGo Zero, a version created without using data from human games, and stronger than any previous version. By playing games against itself, AlphaGo Zero surpassed the strength of AlphaGo Lee in three days by winning 100 games to 0, reached the level of AlphaGo Master in 21 days, and exceeded all the old versions in 40 days.
AlphaZero is a computer program developed by artificial intelligence research company DeepMind to master the games of chess, shogi and go. This algorithm uses an approach similar to AlphaGo Zero.
Elmo is a computer shogi evaluation function and book file (joseki) created by Makoto Takizawa (瀧澤誠). It is designed to be used with a third-party shogi alpha–beta search engine.
The problem of Multi-Agent Pathfinding (MAPF) is an instance of multi-agent planning and consists in the computation of collision-free paths for a group of agents from their location to an assigned target. It is an optimization problem, since the aim is to find those paths that optimize a given objective function, usually defined as the number of time steps until all agents reach their goal cells. MAPF is the multi-agent generalization of the pathfinding problem, and it is closely related to the shortest path problem in the context of graph theory.
Deep reinforcement learning is a subfield of machine learning that combines reinforcement learning (RL) and deep learning. RL considers the problem of a computational agent learning to make decisions by trial and error. Deep RL incorporates deep learning into the solution, allowing agents to make decisions from unstructured input data without manual engineering of the state space. Deep RL algorithms are able to take in very large inputs and decide what actions to perform to optimize an objective. Deep reinforcement learning has been used for a diverse set of applications including but not limited to robotics, video games, natural language processing, computer vision, education, transportation, finance and healthcare.
Artificial intelligence and machine learning techniques are used in video games for a wide variety of applications such as non-player character (NPC) control and procedural content generation (PCG). Machine learning is a subset of artificial intelligence that uses historical data to build predictive and analytical models. This is in sharp contrast to traditional methods of artificial intelligence such as search trees and expert systems.
Federated learning is a sub-field of machine learning focusing on settings in which multiple entities collaboratively train a model while ensuring that their data remains decentralized. This stands in contrast to machine learning settings in which data is centrally stored. One of the primary defining characteristics of federated learning is data heterogeneity. Due to the decentralized nature of the clients' data, there is no guarantee that data samples held by each client are independently and identically distributed.
Multi-agent reinforcement learning (MARL) is a sub-field of reinforcement learning. It focuses on studying the behavior of multiple learning agents that coexist in a shared environment. Each agent is motivated by its own rewards, and does actions to advance its own interests; in some environments these interests are opposed to the interests of other agents, resulting in complex group dynamics.
Timothy P. Lillicrap is a Canadian neuroscientist and AI researcher, adjunct professor at University College London, and staff research scientist at Google DeepMind, where he has been involved in the AlphaGo and AlphaZero projects mastering the games of Go, Chess and Shogi. His research focuses on machine learning and statistics for optimal control and decision making, as well as using these mathematical frameworks to understand how the brain learns. He has developed algorithms and approaches for exploiting deep neural networks in the context of reinforcement learning, and new recurrent memory architectures for one-shot learning.
MuZero is a computer program developed by artificial intelligence research company DeepMind to master games without knowing their rules. Its release in 2019 included benchmarks of its performance in go, chess, shogi, and a standard suite of Atari games. The algorithm uses an approach similar to AlphaZero. It matched AlphaZero's performance in chess and shogi, improved on its performance in Go, and improved on the state of the art in mastering a suite of 57 Atari games, a visually-complex domain.
The Korkine–Zolotarev (KZ) lattice basis reduction algorithm or Hermite–Korkine–Zolotarev (HKZ) algorithm is a lattice reduction algorithm.
In machine learning, reinforcement learning from human feedback (RLHF), also known as reinforcement learning from human preferences, is a technique to align an intelligent agent to human preferences. In classical reinforcement learning, the goal of such an agent is to learn a function that guides its behavior called a policy. This function learns to maximize the reward it receives from a separate reward function based on its task performance. In the case of human preferences, however, it tends to be difficult to define explicitly a reward function that approximates human preferences. Therefore, RLHF seeks to train a "reward model" directly from human feedback. The reward model is first trained in a supervised fashion—independently from the policy being optimized—to predict if a response to a given prompt is good or bad based on ranking data collected from human annotators. This model is then used as a reward function to improve an agent's policy through an optimization algorithm like proximal policy optimization.