Site index

Last updated

Site index is a term used in forestry to describe the potential for forest trees to grow at a particular location or "site". Site is defined as "The average age of dominate and/or codominate trees of an even-aged, undisturbed site of intolerant trees at a base age"; [1] furthermore, the word site is used in forestry to refer to a distinct area where trees are found. [2] Site index is used to measure the productivity of the site and the management options for that site and reports the height of dominant and co-dominant trees in a stand at a base age such as 25, 50 and 100 years. [2] For example, a red oak with an age of 50 years and a height of 70 feet (21 m) will have a site index of 70. Site index is species specific. Common methods used to determine site index are based on tree height, plant composition and the use of soil maps.

Contents

Determining site index

The most common of the methods used to determine site index is tree height. Determining site index is achieved by measuring and averaging the total height and age of trees found on that site. Height is obtained from a site tree, usually a dominant or co-dominant tree (referred to as canopy position) in a stand and is estimated using an instrument called a clinometer, or measured using a laser hypsometer or releskop. Age is calculated using an instrument called an increment borer or from planting records for even aged stands. These values are then used on a graph or an equation called a site index curve.

Determining site index from plant composition is often referred to as the indicator-plant approach. Site index is determined from plant composition by the presence, abundance, and size of understory plants. Understory plants are especially useful if they are only found in specific areas. [2]

In the United States, site index can be determined from soil maps provided by the Natural Resources Conservation Service (NRCS). Soil surveys were conducted by the NRCS and site index was measured for these soils. Tables were compiled of the relationships between different soils and different site indexes for important species of that area.

Direct methods of creating a site index include estimation from historical yield records, stand volume data, growth intercepts, or height–age relationships (site index). Site index has been the most widely used means of estimating site productivity in North America, despite some shortcomings. Indirect methods include estimations based on relationships among dominant species, lesser vegetation characteristics or site indicators, as well as topographic, climatic, and edaphic factors. A generalized model using both direct and indirect variables for developing composite site index equations was presented by Payandeh and Wang (1997). [3] The generalized model described 2 data sets better than did either a composite site index model (Payandeh 1991) [4] or a logistic site index model, Model 3 (Monserud 1984). [5]

Examples

A tree is measured to be 60 feet (18 m) in overall height, and the stand age is determined to be 50 years old. To find site index from a site index curve, one would find age 50 along the x-axis and then find 60 feet (18 m) along the y-axis. Where these two points intersect one would find the nearest line, which represents the site index for that stand.

An example of a site index equation is: lnS=lnHd-b1(A−1-Ai−1)

Where S is site index, Ai is index age, Hd is height of dominants and co-dominants and A is stand age. This will estimate height at index age (site index). [2]

Example: White spruce

Characterization of site quality or productivity is important in forest management. Since it is so difficult to predict early growth rates of planted white spruce, site index curves cannot be reliably extended below about 15 years (Stiell 1976). [6] After that, height growth can be fairly uniform until it begins to decline 25 to 35 years later, e.g., at Petawawa, where dominant height growth remained at about 30 cm per annum at age 45 to 50 years (Stiell and Berry 1973). [7]

Among the individual white spruce within a stand, height growth varies greatly, often with a coefficient of variation in height of about 30% (Stiell 1955). [8] Such variation may reflect differential expressions of check, variability within the seed lot, or the use of poorly graded stock (Stiell 1976). [8] A fully stocked 30-year-old plantation of white spruce on a loamy fine sand underlain by silty clay loam in northern Michigan exemplifies both the variability in size of stem and their persistence.

Site index curves for interior spruce in British Columbia have been developed by the British Columbia Ministry of Forests Research Branch (Thrower et al. 1991, Coates et al. 1994). [9] [10] From measurements of 3212 individually measured spruce trees (including black spruce) in interior British Columbia, curves were drawn to define site classes at a reference age of 50 years (Hegyi et al. 1981). [11]

The site index curves at base age 50 years for planted unthinned white spruce at Petawawa Forest Experiment Station in eastern Ontario range between 24.38 m and 15.24 m (Stiell and Berry 1973), [7] and fall comfortably within the 30 m to 5 m range of those for interior British Columbia (Viszlai 1983, Coates et al. 1994). [10] [12]

See also

Related Research Articles

<span class="mw-page-title-main">Tillage</span> Preparation of soil by mechanical agitation

Tillage is the agricultural preparation of soil by mechanical agitation of various types, such as digging, stirring, and overturning. Examples of human-powered tilling methods using hand tools include shoveling, picking, mattock work, hoeing, and raking. Examples of draft-animal-powered or mechanized work include ploughing, rototilling, rolling with cultipackers or other rollers, harrowing, and cultivating with cultivator shanks (teeth).

<span class="mw-page-title-main">Spruce</span> Genus of evergreen, coniferous tree

A spruce is a tree of the genus Picea, a genus of about 35 species of coniferous evergreen trees in the family Pinaceae, found in the northern temperate and boreal (taiga) regions of the Earth. Picea is the sole genus in the subfamily Piceoideae. Spruces are large trees, from about 20 to 60 m tall when mature, and have whorled branches and conical form. They can be distinguished from other members of the pine family by their needles (leaves), which are four-sided and attached singly to small persistent peg-like structures on the branches, and by their cones, which hang downwards after they are pollinated. The needles are shed when 4–10 years old, leaving the branches rough with the retained pegs. In other similar genera, the branches are fairly smooth.

<span class="mw-page-title-main">Tree planting</span> Process of transplanting tree seedlings

Tree-planting is the process of transplanting tree seedlings, generally for forestry, land reclamation, or landscaping purposes. It differs from the transplantation of larger trees in arboriculture and from the lower-cost but slower and less reliable distribution of tree seeds. Trees contribute to their environment over long periods of time by providing oxygen, improving air quality, climate amelioration, conserving water, preserving soil, and supporting wildlife. During the process of photosynthesis, trees take in carbon dioxide and produce the oxygen we breathe.

<span class="mw-page-title-main">Plant nursery</span> Facility where plants are propagated and grown to usable size

A nursery is a place where plants are propagated and grown to a desired size. Mostly the plants concerned are for gardening, forestry, or conservation biology, rather than agriculture. They include retail nurseries, which sell to the general public; wholesale nurseries, which sell only to businesses such as other nurseries and commercial gardeners; and private nurseries, which supply the needs of institutions or private estates. Some will also work in plant breeding.

<i>Picea sitchensis</i> Species of large coniferous tree

Picea sitchensis, the Sitka spruce, is a large, coniferous, evergreen tree growing to almost 100 meters (330 ft) tall, with a trunk diameter at breast height that can exceed 5 m (16 ft). It is by far the largest species of spruce and the fifth-largest conifer in the world, and the third-tallest conifer species. The Sitka spruce is one of the few species documented to exceed 90 m (300 ft) in height. Its name is derived from the community of Sitka in southeast Alaska, where it is prevalent. Its range hugs the western coast of Canada and the US, continuing south into northernmost California.

Silviculture is the practice of controlling the growth, composition/structure, and quality of forests to meet values and needs, specifically timber production.

<span class="mw-page-title-main">Old-growth forest</span> Type of forest

An old-growth forest, sometimes synonymous with primary forest, virgin forest, late seral forest, primeval forest, or first-growth forest—is a forest that has attained great age without significant disturbance, and thereby exhibits unique ecological features, and might be classified as a climax community. The Food and Agriculture Organization of the United Nations defines primary forests as naturally regenerated forests of native tree species where there are no clearly visible indications of human activity and the ecological processes are not significantly disturbed. More than one-third of the world's forests are primary forests. Old-growth features include diverse tree-related structures that provide diverse wildlife habitat that increases the biodiversity of the forested ecosystem. Virgin or first-growth forests are old-growth forests that have never been logged. The concept of diverse tree structure includes multi-layered canopies and canopy gaps, greatly varying tree heights and diameters, and diverse tree species and classes and sizes of woody debris.

<span class="mw-page-title-main">Transplanting</span> Gardening technique

In agriculture and gardening, transplanting or replanting is the technique of moving a plant from one location to another. Most often this takes the form of starting a plant from seed in optimal conditions, such as in a greenhouse or protected nursery bed, then replanting it in another, usually outdoor, growing location. The agricultural machine that does this is called a transplanter. This is common in market gardening and truck farming, where setting out or planting out are synonymous with transplanting. In the horticulture of some ornamental plants, transplants are used infrequently and carefully because they carry with them a significant risk of killing the plant.

<i>Picea glauca</i> Species of conifer

Picea glauca, the white spruce, is a species of spruce native to the northern temperate and boreal forests in North America. Picea glauca is native from central Alaska all through the east, across western and southern/central Canada to the Avalon Peninsula in Newfoundland, and south to Montana, North Dakota, Minnesota, Wisconsin, Michigan, Upstate New York and Vermont, along with the mountainous and immediate coastal portions of New Hampshire and Maine, where temperatures are just barely cool and moist enough to support it. There is also an isolated population in the Black Hills of South Dakota and Wyoming. It is also known as Canadian spruce, skunk spruce, cat spruce, Black Hills spruce, western white spruce, Alberta white spruce, and Porsild spruce.

The following outline is provided as an overview of and guide to forestry:

<i>Choristoneura fumiferana</i> Species of moth

Choristoneura fumiferana, the eastern spruce budworm, is a species of moth of the family Tortricidae native to the eastern United States and Canada. The caterpillars feed on the needles of spruce and fir trees. Eastern spruce budworm populations can experience significant oscillations, with large outbreaks sometimes resulting in wide scale tree mortality. The first recorded outbreaks of the spruce budworm in the United States occurred in about 1807, and since 1909 there have been waves of budworm outbreaks throughout the eastern United States and Canada. In Canada, the major outbreaks occurred in periods circa 1910–20, c. 1940–50, and c. 1970–80, each of which impacted millions of hectares of forest. Longer-term tree-ring studies suggest that spruce budworm outbreaks have been recurring approximately every three decades since the 16th century, and paleoecological studies suggest the spruce budworm has been breaking out in eastern North America for thousands of years.

Forest inventory is the systematic collection of data and forest information for assessment or analysis. An estimate of the value and possible uses of timber is an important part of the broader information required to sustain ecosystems. When taking forest inventory the following are important things to measure and note: species, diameter at breast height (DBH), height, site quality, age, and defects. From the data collected one can calculate the number of trees per acre, the basal area, the volume of trees in an area, and the value of the timber. Inventories can be done for other reasons than just calculating the value. A forest can be cruised to visually assess timber and determine potential fire hazards and the risk of fire. The results of this type of inventory can be used in preventive actions and also awareness. Wildlife surveys can be undertaken in conjunction with timber inventory to determine the number and type of wildlife within a forest. The aim of the statistical forest inventory is to provide comprehensive information about the state and dynamics of forests for strategic and management planning. Merely looking at the forest for assessment is called taxation.

The biogeoclimatic zones of British Columbia are units of a classification system used by the British Columbia Ministry of Forests for the Canadian province's fourteen different broad, climatic ecosystems. The classification system, termed Biogeoclimatic Ecosystem Classification, exists independently of other ecoregion systems, one created by the World Wildlife Fund and the other in use by Environment Canada, which is based on one created by the Commission for Environmental Cooperation (CEC) and also in use by the US Environmental Protection Agency (EPA). The system of biogeoclimatic ecosystem classification was partly created for the purpose of managing forestry resources, but is also in use by the British Columbia Ministry of Environment and Climate Change Strategy and other provincial agencies. A biogeoclimatic zone is defined as "a geographic area having similar patterns of energy flow, vegetation and soils as a result of a broadly homogenous macroclimate."

<i>Dendroctonus rufipennis</i> Species of beetle

Dendroctonus rufipennis, the spruce beetle, is a species of bark beetle native to British Columbia, Newfoundland and Labrador, Nova Scotia, Ontario, Quebec, Northern Manitoba, the Yukon, Colorado, Wyoming, Montana, and Maine. They are known to destroy forests of spruce trees including Engelmann, White, Sitka, and Colorado blue spruce. Adults average 4 to 7 mm in length.

When logging began in British Columbia, Canada, in the late 19th century, the overriding concern was to harvest timber in the most economical fashion. Reforestation, aesthetics and protection of fish and wildlife habitat were not issues of great concern.

FORECAST is a management-oriented, stand-level, forest-growth and ecosystem-dynamics model. The model was designed to accommodate a wide variety of silvicultural and harvesting systems and natural disturbance events in order to compare and contrast their effect on forest productivity, stand dynamics, and a series of biophysical indicators of non-timber values.

<i>Pseudotsuga menziesii <span style="font-style:normal;">var.</span> menziesii</i> Variety of conifer

Pseudotsuga menziesii var. menziesii, commonly known as Coast Douglas-fir, Pacific Douglas-fir, Oregon pine, or Douglas spruce, is an evergreen conifer native to western North America from west-central British Columbia, Canada southward to central California, United States. In Oregon and Washington its range is continuous from the Cascades crest west to the Pacific Coast Ranges and Pacific Ocean. In California, it is found in the Klamath and California Coast Ranges as far south as the Santa Lucia Mountains with a small stand as far south as the Purisima Hills, Santa Barbara County. In the Sierra Nevada it ranges as far south as the Yosemite region. It occurs from near sea level along the coast to 1,800 metres (5,900 ft) in the California Mountains. Further inland, coast Douglas-fir is replaced by Rocky Mountain or interior Douglas-fir. Interior Douglas-fir intergrades with coast Douglas-fir in the Cascades of northern Washington and southern British Columbia.

<span class="mw-page-title-main">Gap dynamics</span>

Gap dynamics refers to the pattern of plant growth that occurs following the creation of a forest gap, a local area of natural disturbance that results in an opening in the canopy of a forest. Gap dynamics are a typical characteristic of both temperate and tropical forests and have a wide variety of causes and effects on forest life.

<span class="mw-page-title-main">Deforestation in British Columbia</span>

The deforestation in British Columbia has occurred at a heavy rate during periods of the past, but with new sustainable efforts and programs the rate of deforestation is decreasing in the province. In British Columbia, forests cover over 55 million hectares, which is 57.9% of British Columbia's 95 million hectares of land. The forests are mainly composed of coniferous trees, such as pines, spruces and firs.

A mixedwood stand is a forest type in which 26% to 75% of the canopy is made up of softwood trees.

References

  1. Nyland, R.D. (2002). Silviculture: Concepts and Applications, 2nd ed. Illinois: Waveland Press.
  2. 1 2 3 4 Avery, T.E.; H.E. Burkhart (2002). Forest Measurements, 5th ed. New York: McGraw-Hill.
  3. Payandeh, B.; Wang, Y. 1997. A generalized model for developing composite site index equations. Nat. Resour. Can., Can. For. Serv., Sault Ste. Marie ON, Frontline Tech. Note 99. 4 p.
  4. Payandeh, B. 1991. Composite site-productivity functions for Northeastern Ontario black spruce. New Forests 5(1):1–12.
  5. Monserud, R.A. 1984. Problems with site index: an opinionated review. p. 167–180 in Bockheim, J.G. (Ed.). Proc. Symp. Forest Land Classification: Experiences, Problems, Perspectives. Sept. 1983, Madison WI. USDA, For. Serv., North Central For. Exp. Sta., St. Paul MN Rep. NC-102. 209 p.
  6. Stiell, W.M. 1976. White spruce: artificial regeneration in Canada. Dep. Environ., Can. For. Serv., Ottawa ON, Inf. Rep. FMR-X-85. 275 p.
  7. 1 2 Stiell, W.M.; Berry, A.B. 1973. Development of unthinned white spruce plantations to age 50 at Petawawa Forest Experiment Station. Can. Dep. Environ., Can. For. Serv., Ottawa ON, Publ. 1317. 18 p.
  8. 1 2 Stiell, W.M. 1955. The Petawawa plantations. Can. Dep. Northern Affairs National Resour., For. Branch, For. Res. Div., Ottawa ON, Tech. Note 21. 46 p.
  9. Thrower, J.S.; Nussbaum, A.F.; DiLucca, C.M. 1991. Site index curves and tables for British Columbia: interior species. B.C. Min. For., Victoria BC, Land Manage. Handb. Field Guide Insert No. 6. (Cited in Coates et al. 1994).
  10. 1 2 Coates, K.D.; Haeussler, S.; Lindeburgh, S.; Pojar, R.; Stock, A.J. 1994. Ecology and silviculture of interior spruce in British Columbia. Canada/British Columbia Partnership Agreement For. Resour. Devel., Victoria BC, FRDA Rep. 220. 182 p.
  11. Hegyi, F.; Jelinek, J.; Carpenter, D.B. 1981. Site index equations and curves for the major tree species in British Columbia, revised ed. B.C. Min. For., Victoria BC, For. Invent. Rep. 1. 51 p. (Cited in Coates et al. 1994).
  12. Viszlai, J. 1983. Variable density yield projection coefficients for pure stands in British Columbia. B.C. Min. of For., Inv. Br., Victoria, BC. Report 3. 138 p.