Staurikosaurus

Last updated

Contents

Staurikosaurus
Temporal range: Late Triassic, 233.23  Ma
O
S
D
C
P
T
J
K
Pg
N
Staurikosaurus pricei.jpg
Reconstructed skeleton
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Chordata
Clade: Dinosauria (?)
Clade: Saurischia (?)
Family: Herrerasauridae
Genus: Staurikosaurus
Colbert, 1970
Species:
S. pricei
Binomial name
Staurikosaurus pricei
Colbert, 1970
Synonyms
  • Teyuwasu barberenaiKischlat, 1999

Staurikosaurus (Pronounced "STORE-ee-koh-SAWR-us", "Southern Cross lizard") is a genus of herrerasaurid [1] dinosaur from the Late Triassic of Brazil, found in the Santa Maria Formation.

Description

Size comparison between Staurikosaurus and a human Staurikosaurus size.jpg
Size comparison between Staurikosaurus and a human

Colbert (1970) described Staurikosaurus as a small and agile, bipedal predator. [2] Staurikosaurus lived during the late-Carnian and early-Norian stage, of the Late Triassic, approximately 225 million years ago—which makes it one of the earliest dinosaurs known. Its length is measured at 2.2–2.25 metres (7 ft 3 in – 7 ft 5 in) long, [3] but Gregory S. Paul presented a lower length estimate of 2.1 metres (6 ft 11 in) and a body mass estimate of 12 kilograms (26 lb). [4] Staurikosaurus was small in comparison to later theropods like Megalosaurus . The type specimen has long but relatively slender limb bones.

There exists a very incomplete fossil record of Staurikosaurus, consisting of most of the spine, the legs and the large lower jaw. However, dating from such an early period in the dinosaurs' history and being otherwise so primitive, most of Staurikosaurus' other features as being primitive also can be reconstructed. For example, Staurikosaurus is usually depicted with five toes and five fingers [5] —very simple features of an unspecialized dinosaur. However, since the skeletal structure of the legs is known, it can be seen that Staurikosaurus was a quick runner for its size. It also had just two vertebrae joining the pelvis to the spine, a distinctly primitive condition.

The available teeth for Staurikosaurus bear a morphology that strongly suggests a carnivorous diet. The teeth are all serrated, laterally compressed, and caudally curved (i.e. the top of each tooth is curved back toward the throat). [6] This dentition suggests that Staurikosaurus could catch and hold prey, as well as slice and tear flesh to aid in mechanical digestion. [7]

The tail of Staurikosaurus was relatively long (with more than 40 vertebrae) compared to the rest of its body and was held straight and off the ground as it ran. The rear part of Staurikosaurus's tail is stiffened by features of the tail vertebrae. Ostrom (1969a) considered this adaptation to serve as a dynamic stabilizer facilitating the animal's leaping and running. [8]

Paleoart of Staurikosaurus. Staurikosaurus-mingau-colour.png
Paleoart of Staurikosaurus.

A diagnosis is a statement of the anatomical features of an organism (or group) that collectively distinguish it from all other organisms. Some, but not all, of the features in a diagnosis are also autapomorphies. An autapomorphy is a distinctive anatomical feature that is unique to a given organism or group. According to Sues (1990), Staurikosaurus can be distinguished based on the following 14 features: (i) a mandible almost as long as the femur, suggesting a proportionately large head; (ii) a fairly deep but thin dentary with 13 to 14 teeth and with a well-developed retroarticular process; (iii) a vertebral column with 9 to 10 cervical, 15 dorsal, 2 sacral, and more than 40 caudal vertebrae. Staurikosaurus is considered to be more primitive than any other dinosaur because only two sacral vertebrae are present; (iv) an elongated 3rd, 4th, and 5th cervical vertebrae, which represents a primitive condition; (v) cranial cervical vertebrae that lack epipophyses; (vi) the absence of accessory intervertebral articulations; (vii) a slender scapular blade that is not expanded proximally; (viii) a large and plate-like coracoid; (ix) a humerus featuring a prominent deltopectoral crest (represents a primitive condition) as well having distinctly expanded articular ends; (x) an ilium with an extensively developed medial wall of a semiperforate acetabulum (like Herrerasaurus, but unlike any other dinosaur); (xi) a long pubis, two-thirds the length of the femur; (xii) hollow limb bones that feature fairly thick walls; (xiii) a robust femur with an S-shaped shaft: and (xiv) a tibia and fibula slightly longer than the femur. [9] Novas (1993) added that Staurikosaurus is distinguished from other dinosaurs based on the presence of a distal bevel on anterior margin of its pubis. [10] Langer and Benton (2006) noted that Staurikosaurus can be distinguished based on the anterior trochanter being reduced to a scar. [11] Bittencourt and Kellner (2009) also noted that the proximal fibula has a medial sulcus, which is unique to Staurikosaurus pricei. [6]

Discovery and occurrence

Reconstructed skeleton showing known remains in white, and unknown in gray Staurikosaurus reconstruction.jpg
Reconstructed skeleton showing known remains in white, and unknown in gray

Staurikosaurus means "Southern Cross" (after the star constellation visible from the Southern Hemisphere) and "Lizard" (from the Greek work "saurus" meaning lizard), thus "Southern Cross Lizard." The species name pricei is in the honor of Colbert's fellow paleontologist Llewellyn Ivor Price.

The first known specimen of Staurikosaurus (MCZ 1669) was recovered from the Paleontological Site Jazigo Cinco of the Santa Maria Formation, [5] Rio Grande do Sul, southern Brazil. Staurikosaurus was found in mid-Carnian sediments. The genus name refers to the star constellation "The Southern Cross", pictured in the coat of arms of Brazil and only visible in the Southern Hemisphere—when Staurikosaurus was described in 1970, [2] it was unusual to find dinosaurs in the Southern Hemisphere. The specific name honors the Brazilian paleontologist Llewellyn Ivor Price, who discovered it in 1936. It was described by Edwin Harris Colbert, working at the American Museum of Natural History. The rarity of Staurikosaurus remains may be a result of it being uncommon while alive, or because it lived in an environment like a forest, where fossils rarely form. [5] Nonetheless, Garcia et al. (2019) referred the holotype of Teyuwasu barberenai as a second specimen of Staurikosaurus pricei (see Classification). [12]

Classification

Later research by Sues et al. (2011) supports that Staurikosaurus and the related genus Herrerasaurus are theropods and evolved after the sauropod line had split from the Theropoda. [13] Mortimer points out that Benedetto (1973) and Galton (1985) were the first to recognize that Staurikosaurus and Herrerasaurus were more closely related to each other than to sauropodomorphs or avepods, placing them both in the Herrerasauridae and Herrerasauria. [14] [15] [16] Staurikosaurus differs from Herrerasaurus because of its considerably smaller size (femur length of 23 centimetres (9.1 in) vs. 47 centimetres (19 in)). Sereno et al. (1993) concluded that Staurikosaurus was not a theropod and considered it a basal saurischian outside Theropoda and Sauropodomorpha. [17] Staurikosaurus was originally incorrectly assigned by Colbert to Palaeosauriscidae, a defunct family based largely on Efraasia , a prosauropod dinosaur. All major phylogenetic analyses since 1994 have assigned Staurikosaurus to the clade Herrerasauridae, which is the current scientific consensus on classification of this genus. Bittencourt and Kellner (2009) stated that the phylogenetic position of Staurikosaurus is constrained by its close relationship with Herrerasaurus ischigualastensis, which is more complete and well known. [6] Below is a cladogram based on the phylogenetic analysis conducted by Sues et al. in 2011, showing the relationships of Staurikosaurus: [13]

Restored skeleton Staurikosaurus.jpg
Restored skeleton
Restoration of Staurikosaurus pricei Staurikosaurus new NT.jpg
Restoration of Staurikosaurus pricei
Theropoda  

Staurikosaurus was placed in the clade Herrerasauridae by Benedetto in 1973. Herrerasauridae also includes Herrerasaurus ischigualastensis, both small predatory animals that were either dinosaurs or precursors to dinosaurs. [18] These three dinosaurs lived during the Carnian stage of the Triassic period. Most phylogenetic analyses excluded Eoraptor from the Herrerasauridae. [19] Phylogenetic analysis by Sues, Nesbitt, Berman and Henrici, in 2011, exclude Eoraptor , and include Chindesaurus along with Herrerasaurus as more derived than Staurikosaurus. [20] Sanjuansaurus was assigned to Herrerasauridae by Alcober and Martínez (2010). [21] Sues (1990) assigned Ischisaurus to Herrerasauridae. [22] Other proposed members of the clade have included Sanjuansaurus [23] from the same Ischigualasto Formation of Argentina as Herrerasaurus, and possibly Caseosaurus from the Dockum Formation of Texas, [24] although the relationships of these animals are not fully understood, and not all paleontologists agree. Alcober and Martinez (2010) concluded that Staurikosaurus and Sanjuansaurus are closely related based on similarities in their pubis and tibia. [25]

Synonyms

Femur and tibia holotype of Teyuwasu barberenai (BSPG AS XXV 53). Teyuwasu barberenai.png
Femur and tibia holotype of Teyuwasu barberenai (BSPG AS XXV 53).

The controversial dinosauriform "Teyuwasu barberenai" was recently considered a synonym of Staurikosaurus pricei. [12] Both taxa are known from single incomplete and somewhat poorly preserved specimens, therefore the former holotype specimen of "Teyuwasu" would be the second specimen ascribed to Staurikosaurus within almost 50 years of its naming. [2] [12] The synonymy was based on a combination of five osteological features that are only present in both specimens among Triassic early dinosauriforms: (i) femur without a trochanteric shelf; (ii) symmetric fourth trochanter of the femur; (iii) crista tibiofibularis poorly separated from the lateral condyle at the distal end of the femur; (iv) posterolateral flange of the distal end of the tibia does not exceeds the lateral margin of the bone; (v) and rounded distal end of the tibia.

The synonymy is commented in two subsequent papers, which cast doubt in the association of "Teyuwasu" with Staurikosaurus. In the first paper, the authors only mention that the holotype of "Teyuwasu" is not well preserved, and thus cannot be attributed to Staurikosaurus. [26] In the second, the authors argue that several of the five character states cited to unite the taxa are present in immature specimens of other dinosauriforms. [27] However, the combination (that is, the simultaneous presence) of the five characters listed by Garcia et al. [12] is not present in any of the aforementioned dinosauriforms, and therefore remains unique between "Teyuwasu" and Staurikosaurus.[ citation needed ]

Therefore, further investigations are needed in order to whether confirm or not the synonymy between "Teyuwasu barberenai" and Staurikosaurus pricei.

Paleobiology

Staurikosaurus with a rhynchosaur Staurikosaurus DB.jpg
Staurikosaurus with a rhynchosaur

Feeding

Staurikosaurus was a small but active bipedal predator, that preyed on small and medium-sized terrestrial vertebrates such as cynodonts, rhynchosaurs, and herbivorous synapsids. The mandible of Staurikosaurus suggests that a sliding joint in the jaw allowed it to move backwards and forwards, as well as up and down. However, some authors questioned the presence of an intramandibular joint in Staurikosaurus, due to the poor preservation of the holotype. [6] Smaller prey could be worked backwards towards Staurikosaurus's throat, aided along by its small, backwards-curving teeth. [7] This feature was common in theropods of its time, but would disappear in later theropods.

Paleoecology

Statues of Staurikosaurus and a rhynchosaur at Canela, Brazil Estauricossauro rincossauro.JPG
Statues of Staurikosaurus and a rhynchosaur at Canela, Brazil

During the Late Triassic dinosaurs played only a minor role in terrestrial life; a fact that would change by the Early Jurassic. Staurikosaurus coexisted with large rauisuchian archosaurs like Rauisuchus , which were the top carnivores in their ecosystem [28] Staurikosaurus's paleocommunity included medium- to large-sized herbivorous rhynchosaurs and dicynodonts. Medium-sized omnivorous aetosaurs and cynodonts were also present. Dinosaurs were represented by the Herrerasaurids, which include Staurikosaurus, and the basal sauropodomorph Saturnalia . The contemporaneous occurrence of basal theropods Staurikosaurus, Herrerasaurus, and Eoraptor with the ornithischian Pisanosaurus suggests that the main carnivorous and herbivorous lineages were established during the middle part of the Carnian stage. [18] A U-Pb (uranium decay) dating found that the Santa Maria Formation dated around 233.23 million years ago, putting it 1.5 million years older than the Ischigualasto Formation, and making the two formations approximately equal as the earliest dinosaur localities. [29]

Related Research Articles

<i>Eoraptor</i> Extinct genus of dinosaurs

Eoraptor is a genus of small, lightly built, basal sauropodomorph dinosaur. One of the earliest-known dinosaurs and one of the earliest members of the sauropod family, it lived approximately 231 to 228 million years ago, during the Late Triassic in Western Gondwana, in the region that is now northwestern Argentina. The type and only species, Eoraptor lunensis, was first described in 1993, and is known from an almost complete and well-preserved skeleton and several fragmentary ones. Eoraptor had multiple tooth shapes, which suggests that it was omnivorous. Eoraptor was 1.5 feet (0.46 m) tall and 3 feet (0.91 m) long.

<span class="mw-page-title-main">Sauropodomorpha</span> Extinct clade of dinosaurs

Sauropodomorpha is an extinct clade of long-necked, herbivorous, saurischian dinosaurs that includes the sauropods and their ancestral relatives. Sauropods generally grew to very large sizes, had long necks and tails, were quadrupedal, and became the largest animals to ever walk the Earth. The prosauropods, which preceded the sauropods, were smaller and were often able to walk on two legs. The sauropodomorphs were the dominant terrestrial herbivores throughout much of the Mesozoic Era, from their origins in the Late Triassic until their decline and extinction at the end of the Cretaceous.

<i>Saturnalia tupiniquim</i> Extinct genus of dinosaurs

Saturnalia is an extinct genus of basal sauropodomorph dinosaur known from the Late Triassic Santa Maria Formation of Rio Grande do Sul, southern Brazil. It is one of the earliest known dinosaurs.

<span class="mw-page-title-main">Herrerasauridae</span> Extinct family of basal saurischian dinosaurs

Herrerasauridae is a family of carnivorous dinosaurs, possibly basal to either theropods or even all of saurischians, or even their own branching from Dracohors, separate from Dinosauria altogether. They are among the oldest known dinosaurs, first appearing in the fossil record around 233.23 million years ago, before becoming extinct by the end of the Carnian stage. Herrerasaurids were relatively small-sized dinosaurs, normally no more than 4 metres (13 ft) long, although the holotype specimen of "Frenguellisaurus ischigualastensis" is thought to have reached around 6 meters long. The best known representatives of this group are from South America, where they were first discovered in the 1930s in relation to Staurikosaurus and 1960s in relation to Herrerasaurus. A nearly complete skeleton of Herrerasaurus ischigualastensis was discovered in the Ischigualasto Formation in San Juan, Argentina, in 1988. Less complete possible herrerasaurids have been found in North America and Africa, and they may have inhabited other continents as well.

<i>Herrerasaurus</i> Extinct genus of dinosaurs

Herrerasaurus is likely a genus of saurischian dinosaur from the Late Triassic period. This genus was one of the earliest dinosaurs from the fossil record. Its name means "Herrera's lizard", after the rancher who discovered the first specimen in 1958 in South America. All known fossils of this carnivore have been discovered in the Ischigualasto Formation of Carnian age in northwestern Argentina. The type species, Herrerasaurus ischigualastensis, was described by Osvaldo Reig in 1963 and is the only species assigned to the genus. Ischisaurus and Frenguellisaurus are synonyms.

<i>Guaibasaurus</i> Extinct genus of dinosaurs

Guaibasaurus is an extinct genus of basal saurischian dinosaur known from the Late Triassic Caturrita Formation of Rio Grande do Sul, southern Brazil. Most analyses recover it as a sauropodomorph, although there are some suggestions that it was a theropod instead. In 2016 Gregory S. Paul estimated it at 2 meters and 10 kg, whereas in 2020 Molina-Pérez and Larramendi listed it at 3 meters and 35 kg.

<i>Alwalkeria</i> Extinct genus of dinosaurs

Alwalkeria is a genus partly based on basal saurischian dinosaur remains from the Late Triassic, living in India.

<i>Chindesaurus</i> Extinct genus of dinosaurs

Chindesaurus is an extinct genus of basal saurischian dinosaur from the Late Triassic of the southwestern United States. It is known from a single species, C. bryansmalli, based on a partial skeleton recovered from Petrified Forest National Park in Arizona. The original specimen was nicknamed "Gertie", and generated much publicity for the park upon its discovery in 1984 and airlift out of the park in 1985. Other fragmentary referred specimens have been found in Late Triassic sediments throughout Arizona, New Mexico, and Texas, but these may not belong to the genus. Chindesaurus was a bipedal carnivore, approximately as large as a wolf.

<span class="mw-page-title-main">Dinosauromorpha</span> Clade of reptiles

Dinosauromorpha is a clade of avemetatarsalians that includes the Dinosauria (dinosaurs) and some of their close relatives. It was originally defined to include dinosauriforms and lagerpetids, with later formulations specifically excluding pterosaurs from the group. Birds are the only dinosauromorphs which survive to the present day.

<span class="mw-page-title-main">Ischigualasto Formation</span> Geological formation in Argentina

The Ischigualasto Formation is a Late Triassic geological formation in the Ischigualasto-Villa Unión Basin of southwestern La Rioja Province and northeastern San Juan Province in northwestern Argentina. The formation dates to the late Carnian and early Norian stages of the Late Triassic, according to radiometric dating of ash beds.

<i>Panphagia</i> Extinct genus of dinosaurs

Panphagia is a genus of sauropodomorph dinosaur described in 2009. It lived around 231 million years ago, during the Carnian age of the Late Triassic period in what is now northwestern Argentina. Fossils of the genus were found in the La Peña Member of the Ischigualasto Formation in the Ischigualasto-Villa Unión Basin. The name Panphagia comes from the Greek words pan, meaning "all", and phagein, meaning "to eat", in reference to its inferred omnivorous diet. Panphagia is one of the earliest known dinosaurs, and is an important find which may mark the transition of diet in early sauropodomorph dinosaurs.

<i>Tawa hallae</i> Extinct species of dinosaur

Tawa is a genus of possible basal theropod dinosaurs from the Late Triassic period. The fossil remains of Tawa hallae, the type and only species were found in the Hayden Quarry of Ghost Ranch, New Mexico, US. Its discovery alongside the relatives of Coelophysis and Herrerasaurus supports the hypothesis that the earliest dinosaurs arose in Gondwana during the early Late Triassic period in what is now South America, and radiated from there around the globe. The specific name honours Ruth Hall, founder of the Ghost Ranch Museum of Paleontology.

<i>Sanjuansaurus</i> Extinct genus of dinosaurs

Sanjuansaurus is a genus of herrerasaurid dinosaur from the Late Triassic (Carnian) Ischigualasto Formation of the Ischigualasto-Villa Unión Basin in northwestern Argentina.

<i>Eodromaeus</i> Extinct genus of dinosaurs

Eodromaeus is an extinct genus of probable basal theropod dinosaurs from the Late Triassic of Argentina. Like many other of the earliest-known dinosaurs, it hails from the Carnian-age Ischigualasto Formation, within the Ischigualasto-Villa Unión Basin of northwestern Argentina. Upon its discovery, it was argued to be one of the oldest true theropods, supplanting its contemporary Eoraptor, which was reinterpreted as a basal sauropodomorph.

<i>Daemonosaurus</i> Genus of reptiles (fossil)

Daemonosaurus is an extinct genus of possible theropod dinosaur from the Late Triassic of New Mexico. The only known fossil is a skull and neck fragments from deposits of the latest Triassic Chinle Formation at Ghost Ranch. Daemonosaurus was an unusual dinosaur with a short skull and large, fang-like teeth. It lived alongside early neotheropods such as Coelophysis, which would have been among the most common dinosaurs by the end of the Triassic. However, Daemonosaurus retains several plesiomorphic ("primitive") traits of the snout, and it likely lies outside the clade Neotheropoda. It may be considered a late-surviving basal theropod or non-theropod basal saurischian, possibly allied to other early predatory dinosaurs such as herrerasaurids or Tawa.

Pampadromaeus is an extinct genus of basal sauropodomorph dinosaurs known from the Late Triassic (Carnian) Santa Maria Formation of the Paraná Basin in Rio Grande do Sul, southern Brazil.

<i>Buriolestes</i> Extinct genus of dinosaurs

Buriolestes is a genus of early sauropodomorph dinosaurs from the Late Triassic Santa Maria Formation of the Paraná Basin in southern Brazil. It contains a single species, B. schultzi, named in 2016. The type specimen was found alongside a specimen of the lagerpetid dinosauromorph Ixalerpeton.

Ixalerpeton is a genus of lagerpetid avemetatarsalian containing one species, I. polesinensis. It lived in the Late Triassic of Brazil alongside the sauropodomorph dinosaur Buriolestes.

<i>Nhandumirim</i> Genus of reptiles (fossil)

Nhandumirim is a genus of basal sauropodomorph dinosaur from the Carnian age of Late Triassic Brazil. It is currently considered a saturnaliid sauropodomorph. The type and only species, Nhandumirim waldsangae, is known from a single immature specimen including vertebrae, a chevron, pelvic material, and a hindlimb found in the Santa Maria Formation in Rio Grande do Sul.

<i>Gnathovorax</i> Species of dinosaur

Gnathovorax is a genus of herrerasaurid saurischian dinosaur from the Santa Maria Formation in Rio Grande do Sul, Brazil. The type and only species is Gnathovorax cabreirai, described by Pacheco et al. in 2019.

References

  1. Nesbitt, S. J.; Smith, N. D.; Irmis, R. B.; Turner, A. H.; Downs, A.; Norell, M. A. (2009). "A complete skeleton of a Late Triassic saurischian and the early evolution of dinosaurs". Science. 326 (5959): 1530–1533. Bibcode:2009Sci...326.1530N. doi:10.1126/science.1180350. PMID   20007898. S2CID   8349110.
  2. 1 2 3 Colbert, E. H. (1970). A Saurischian dinosaur from the Triassic of Brazil. AM. MUS. NOVITATES 2405; 1-39
  3. Grillo, O.N. and Azevedo, S.A.K. (2011). "Recovering missing data: estimating position and size of caudal vertebrae in Staurikosaurus pricei Colbert, 1970." Annals of the Brazilian Academy of Sciences,
  4. Paul, Gregory S. (2016). The Princeton Field Guide to Dinosaurs. Princeton University Press. p. 81. ISBN   978-1-78684-190-2. OCLC   985402380.
  5. 1 2 3 "Staurikosaurus." In: Dodson, Peter & Britt, Brooks & Carpenter, Kenneth & Forster, Catherine A. & Gillette, David D. & Norell, Mark A. & Olshevsky, George & Parrish, J. Michael & Weishampel, David B. The Age of Dinosaurs. Publications International, LTD. p. 45. ISBN   0-7853-0443-6.
  6. 1 2 3 4 Bittencourt, J.S. & Kellner, A.W.A., 2009. The anatomy and phylogenetic position of the Triassic dinosaur Staurikosaurus pricei Colbert, 1970. Zootaxa 2079, 1–56.
  7. 1 2 Langer, M. C., 2004, Basal Saurischia, Chapter Two: In: The Dinosauria, Second Edition, edited by Weishampel, D.B., Dodson, P., and Osmolska, H., California University Press, p. 25-46.
  8. J. H. Ostrom. 1969. Osteology of Deinonychus antirrhopus, an unusual theropod from the Lower Cretaceous of Montana. Peabody Museum Bulletin 30:1-165
  9. Sues, 1990. Staurikosaurus and Herrerasauridae. in Weishampel, et al. (eds.). The Dinosauria. University of California Press, Berkeley, Los Angeles, Oxford. 143-147.
  10. Novas, 1993. New information on the systematics and postcranial skeleton of Herrerasaurus ischigualastensis (Theropoda: Herrerasauridae) from the Ischigualasto Formation (Upper Triassic) of Argentina. Journal of Vertebrate Paleontology 13 p. 400-423.
  11. Langer; Benton (2006). "Early dinosaurs: A phylogenetic study". Journal of Systematic Palaeontology. 4 (4): 309–358. doi:10.1017/s1477201906001970. S2CID   55723635.
  12. 1 2 3 4 Garcia, Maurício S.; Müller, Rodrigo T.; Dias-Da-Silva, Sérgio (2019-07-04). "On the taxonomic status of Teyuwasu barberenai Kischlat, 1999 (Archosauria: Dinosauriformes), a challenging taxon from the Upper Triassic of southern Brazil". Zootaxa. 4629 (1): 146–150. doi:10.11646/zootaxa.4629.1.12. ISSN   1175-5334. PMID   31712541. S2CID   198274900.
  13. 1 2 Sues, Hans-Dieter; Nesbitt, Sterling J.; Berman, David S.; Henrici, Amy C. (2011). "A late-surviving basal theropod dinosaur from the latest Triassic of North America". Proceedings of the Royal Society B. 278 (1723): 3459–3464. doi:10.1098/rspb.2011.0410. PMC   3177637 . PMID   21490016.
  14. Mortimer, Mickey (2012). "Non-theropods".
  15. Benedetto (1973). "Herrerasauridae, nueva familia de saurisquios triasicos". Ameghiniana. 10 (1): 89–102.
  16. Galton, 1985. "The poposaurid thecodontian Teratosaurus suevicus v. Meyer, plus referred specimens mostly based on prosauropod dinosaurs, from the Middle Stubensandstein (Upper Triassic) of Nordwurttemberg". Stuttgart Beitrage zur Naturkunde (B). 116, 1-29.
  17. Sereno, P. C. (1993). "The pectoral girdle and forelimb of the basal Theropod Herrerasaurus ischigualastensis". Journal of Vertebrate Paleontology. 13 (4): 425–450. doi:10.1080/02724634.1994.10011524.
  18. 1 2 Novas, F.E. 1997. Herrerasauridae. In P.J. Currie and K. Padian (eds.). Encyclopedia of Dinosaurs. Academic Press.
  19. Novas, Fernando E.; Ezcurra, Martin D.; Chatterjee, Sankar; Kutty, T. S. (2011). "New dinosaur species from the Upper Triassic Upper Maleri and Lower Dharmaram formations of central India". Earth and Environmental Science Transactions of the Royal Society of Edinburgh. 101 (3–4): 333–349. doi:10.1017/s1755691011020093. S2CID   128620874.
  20. Sues, Hans-Dieter; Nesbitt, Sterling J.; Berman, David S; Henrici, Amy C. (2011). "A late-surviving basal theropod dinosaur from the latest Triassic of North America". Proceedings of the Royal Society B. 278 (1723): 3459–3464. doi:10.1098/rspb.2011.0410. PMC   3177637 . PMID   21490016.
  21. Alcober, O. A.; Martínez, R. N. (2010). "A new herrerasaurid (Dinosauria, Saurischia) from the Upper Triassic Ischigualasto Formation of northwestern Argentina". ZooKeys (63): 55–81.
  22. H.-D. Sues. 1990. Staurikosaurus and Herrerasauridae. In D. B. Weishampel, H. Osmólska, and P. Dodson (eds.), The Dinosauria. University of California Press, Berkeley 143-147
  23. Alcober, Oscar A.; Martinez, Ricardo N. (2010). "A new herrerasaurid (Dinosauria, Saurischia) from the Upper Triassic Ischigualasto Formation of northwestern Argentina". ZooKeys (63): 55–81. doi: 10.3897/zookeys.63.550 . PMC   3088398 . PMID   21594020.
  24. Hunt, A.P.; Lucas, S.G.; Heckert, A.B.; Sullivan, R.M.; Lockley, M.G. (1998). "Late Triassic Dinosaurs from the Western United States". Geobios. 31 (4): 511–531. doi:10.1016/S0016-6995(98)80123-X.
  25. Alcober, Oscar A.; Martinez, Ricardo N. (2010). "A new herrerasaurid (Dinosauria, Saurischia) from the Upper Triassic Ischigualasto Formation of northwestern Argentina". ZooKeys (63): 55–81.
  26. Desojo, Julia; von Baczko, María; Rauhut, Oliver (2020). "Anatomy, taxonomy and phylogenetic relationships of Prestosuchus chiniquensis (Archosauria: Pseudosuchia) from the original collection of von Huene, Middle-Late Triassic of southern Brazil". Palaeontologia Electronica. 23 (1): 1–55. doi: 10.26879/1026 . hdl: 11336/127498 .
  27. Novas, Fernando E.; Agnolin, Federico L.; Ezcurra, Martín D.; Müller, Rodrigo T.; Martinelli, Agustìn; Langer, Max (April 2021). "Review of the fossil record of early dinosaurs from South America, and its phylogenetic implications". Journal of South American Earth Sciences. 110: 103341. doi:10.1016/j.jsames.2021.103341.
  28. J.F. Bonaparte, 1982, "Faunal Replacement in the Triassic of South America", Journal of Vertebrate Paleontology 2 (3): 362-371, December 1982.
  29. Langer, M.C.; Ramezani, J.; Da Rosa, Á.A.S. (2018). "U-Pb age constraints on dinosaur rise from south Brazil". Gondwana Research. X (18): 133–140. doi:10.1016/j.gr.2018.01.005.