Teleocrater Temporal range: Anisian ~ | |
---|---|
Replica of hindlimb at the Field Museum of Natural History | |
Scientific classification | |
Domain: | Eukaryota |
Kingdom: | Animalia |
Phylum: | Chordata |
Clade: | Avemetatarsalia |
Clade: | † Aphanosauria |
Genus: | † Teleocrater Nesbitt et al., 2017 |
Type species | |
†Teleocrater rhadinus Nesbitt et al., 2017 |
Teleocrater (meaning "completed basin", in reference to its closed acetabulum) is a genus of avemetatarsalian archosaur from the Middle Triassic Manda Formation of Tanzania. The name was coined by English paleontologist Alan Charig in his 1956 doctoral dissertation, but was only formally published in 2017 by Sterling Nesbitt and colleagues. The genus contains the type and only species T. rhadinus. Uncertainty over the affinities of Teleocrater have persisted since Charig's initial publication; they were not resolved until Nesbitt et al. performed a phylogenetic analysis. They found that Teleocrater is most closely related to the similarly enigmatic Yarasuchus , Dongusuchus , and Spondylosoma in a group that was named the Aphanosauria. Aphanosauria was found to be the sister group of the Ornithodira, the group containing dinosaurs and pterosaurs.
A carnivorous quadruped measuring 7–10 feet (2.1–3.0 m) long, Teleocrater is notable for its unusually long neck vertebrae. The neural canals in its neck vertebrae gradually become taller towards the back of the neck, which may be a distinguishing trait. Unlike the Lagerpetidae or Ornithodira, the hindlimbs of Teleocrater are not adapted for running; the metatarsal bones are not particularly elongated. Also unlike lagerpetids and ornithodirans, Teleocrater inherited the more flexible ankle configuration present ancestrally among archosaurs, suggesting that the same configuration was also ancestral to Avemetatarsalia but was lost independently by several lineages. Histology of the long bones of Teleocrater indicates that it had moderately fast growth rates, closer to ornithodirans than crocodilians and other pseudosuchians.
In life, Teleocrater would have been a long-necked and carnivorous [1] quadruped that measured some 7–10 feet (2.1–3.0 m) in length. [2]
Carnivory can be inferred for Teleocrater from the single tooth that was preserved, which is compressed, recurved, and bears serrations on both edges. Like other members of the Archosauria, the recess in the maxilla in front of the antorbital fenestra (the antorbital fossa) extends onto the backward-projecting process of the bone, and the palatal projection of the two maxillae contacted each other. [3] Additionally, like early dinosaurs, there is a depression on the frontal bone in front of the supratemporal fenestra (the supratemporal fossa). [1] [4] [5]
The cervical vertebrae of Teleocrater from the front half of the neck are quite long, up to 3.5 times as long as they are high; they are among the longest of Triassic avemetatarsalians. Proportionally, they are longer than either the rest of the cervical vertebrae or any of the vertebrae from the front of the trunk. On the cervical vertebrae, the tops of the neural spines are blade-like, but are accompanied by rounded and roughened projections; the front portions of the neural spines strongly overhang the preceding vertebrae; and the cervical vertebrae from the back of the neck have an additional projection above the parapophysis, previously identified by Nesbitt as part of a "divided parapophysis". These are shared characteristics of the Aphanosauria. In contrast to most other archosauriforms, the openings of the cervical neural canals in Teleocrater are large, subelliptical, and transition from being wider than they are tall at the front of the neck to being taller than they are wide at the back of the neck; this may be unique to the genus. The epipophyses from the front and middle cervical vertebrae project backwards, and, as in Yarasuchus and some pseudosuchians, the back cervical vertebrae appear to have supported three-headed ribs. [1] [3] [6]
On the dorsal vertebrae, the accessory articulations known as the hyposphene-hypantrum articulations are well-developed. Like other aphanosaurians, there are pits located on the side of the base of the dorsal vertebrae. Two vertebrae are associated with the sacrum in Teleocrater; there are three such vertebrae in Nyasasaurus . [7] The ribs associated with the latter sacral vertebra bear processes that project backward and outward, which is only otherwise seen in Yarasuchus, Spondylosoma , and members of the dinosauriforms. There were no bony osteoderms preserved in association with the specimen, which indicates that Teleocrater probably lacked osteoderms, unlike pseudosuchians. [1]
Like other archosaurs as well as the proterosuchids, [6] Teleocrater has a distinct acromion process on the scapula, and like silesaurids there is a thin ridge on the back of the bone. The socket of the scapula is oriented downwards and backwards, more so than that of Yarasuchus. On the humerus, there is a long deltopectoral crest that stretches for about 30% of the bone's length, as with other aphanosaurians; such a long crest is also seen in Nyasasaurus [7] and dinosaurs, [8] but not pterosaurs or silesaurids. Another aphanosaurian characteristic is the wide bottom end of the humerus, which is about 30% of the bone's length. The hand was apparently quite small. [1]
Teleocrater is named after its mostly-closed acetabulum, or hip socket (the eponymous "basin"). There is a small and concave notch on the bottom edge of the part of the ilium that extends to meet the ischium, which suggests a small perforation within the acetabulum. This is not a unique characteristic; Asilisaurus [9] and Silesaurus [10] both also possess it. The inner surface of the ilium in front of the acetabulum curves inwards, forming a pocket. Like both Asilisaurus [9] and Marasuchus , [11] the front portion of the ilium is separated from the rest of the bone by a ridge that rises vertically from the top rim of the acetabulum. As in other aphanosaurians, the ischia contact each other extensively along the midline, but less so near the tops of the bones; the bottom back portion of each ischium is rounded, and the top of the shaft of each ischium bears a longitudinal groove. [1]
In terms of hindlimb proportions, Teleocrater is more similar to silesaurids, pseudosuchians, and early archosaurs than lagerpetids or ornithodirans, in that the metatarsus is not particularly lengthened with respect to the femur and tibia. The lengthening of the metatarsus in the latter groups probably represent adaptations to running. [1] [12]
The femur of Teleocrater shows a combination of diverse characteristics. Like other aphanosaurians, the top end of the femur bears a transverse groove, and also bears a scar for the attachment of the iliofemoralis externus muscle that is connected to the intermuscular line; the same condition is seen with the anterior trochanter in dinosaurmorphs, yet the scar is clearly separated from that of the iliotrochantericus caudalis as it is in Dongusuchus , Yarasuchus, and early archosaurs. [3] An additional aphanosaurian trait is that the bottom articulating surface of the femur is concave. On this articulating surface, the back of the medial condyle bears a vertical scar, also seen in dinosauromorphs. The femur is overall quite similar to that of Dongusuchus; however, in Teleocrater, the sides of the top end are more rounded and the inner surface is concave, the posteromedial tuber on the top end is convex instead of flat, and the length relative to midshaft width is shorter. [1]
Unlike either proterochampsids or dinosauromorphs, [3] [6] the tibia of Teleocrater does not bear a cnemial crest. The fibula bears a long, twisted crest for the attachment of the iliofibularis, and the front edge of the top of the bone is expanded outwards. Additional features shared by aphanosaurians, silesaurids (namely Asilisaurus and Lewisuchus [9] ), and pseudosuchians occur in the calcaneum. It has a convex-concave joint with the astragalus that allows for free movement, a tuber on its surface that is tall, broad, and directed backwards, and its articulation with the fibula is distinctly rounded. Meanwhile, lagerpetids and pterosaurs both lack the tuber (lagerpetids also lack the rounded fibular articulation), and dinosaurs lack the convex-concave joint. [1]
The holotype specimen of Teleocrater, NHMUK PV R6795, was found by Francis Rex Parrington in 1933. It consists of a partial, disarticulated skeleton that includes four vertebrae from the neck, seven from the trunk, and seventeen from the tail; parts of one neck and one trunk rib; part of a scapula and coracoid; the radius and ulna from the right forelimb; part of the left ilium; both femora and tibiae, as well as the left fibula; and isolated fragments from metatarsals and phalanges. Parts of the trunk vertebrae and humerus, likely originating from another individual, were referred to the same animal under the specimen number NHMUK PV R6796. [1] Although the exact locality is unknown, Parrington recorded the specimen as originating from near the village of Mkongoleko, "south of river Mkongoleko", in the Ruhuhu Basin of southern Tanzania. [13] These specimens were stored at the Natural History Museum, London.
Alan J. Charig described the remains of Teleocrater in his 1956 PhD thesis for the University of Cambridge. [2] He was the first to apply the name Teleocrater, derived from Greek teleos ("finished", "complete") and krater ("bowl", "basin"), in reference to the closed acetabulum of the animal. [1] His initial thesis listed tanyura as the specific name of Teleocrater; later, in a 1967 overview of reptiles, he revised it to rhadinus, from Greek rhadinos ("slender", in reference to the bodyplan of the animal). However, given that it was never formally published, it remained an invalid nomen nudum. [14]
In 2015, a bonebed designated as Z183 was discovered within 1 kilometre (0.62 mi) of the approximate location described by Parrington. This bonebed contained at least three individuals of different sizes, represented by 27 bones, all of which were mixed in with the remains of an allokotosaurian; new elements not known previously included the maxilla, quadrate, braincase, axis, sacral vertebrae, humeri, ischia, and calcaneum. They were stored at the National Museum of Tanzania. It is quite possible, given the proximity, that this bonebed represents the same site that the original specimens were recovered from. In 2017, these remains, along with the holotype, were described by a study published in Nature , co-authored by Sterling Nesbitt and others. They formally named the genus Teleocrater, and the type and only species T. rhadinus. The late Charig was honoured as a co-author on this study. [1]
Bonebed Z183 belongs to the lower portion of the Lifua Member of the Manda Formation. The bonebed is located in a gully, and is surrounded by pinkish-grey cross-bedded sandstone containing well-rounded quartz pebbles. The sandstone is overlain near the top by reddish-brown and olive-grey siltstone in a digit-like pattern characteristic of point bars; [15] most of the vertebrate remains are concentrated within a 45 centimetres (18 in) section of this overlap. Discontinuous veins, or stringers, of brown claystone are also present. This layer has been biostratigraphically correlated to Subzone B of the South African Cynognathus Assemblage Zone, [16] which is situated in the Anisian epoch of the Triassic period. This makes Teleocrater the oldest known bird-line archosaur, preceding the previous record-holder Asilisaurus. [1] [9]
Prior to the formalization of the definitions of these groups by Jacques Gauthier in 1986, [17] Teleocrater was variously considered as a rauisuchian, an ornithosuchian (Ornithosuchia being in fact synonymous with Avemetatarsalia), or a thecodont. The position of Teleocrater remained enigmatic due to the absence of additional remains [2] and the lack of a phylogenetic analysis incorporating the taxon. A 2008 histological study of early archosauriforms by Armand de Ricqlès and colleagues tentatively identified Teleocrater as an archosauriform of uncertain phylogenetic placement, but possibly closely related to Eucrocopoda. [18]
Nesbitt et al. utilized two phylogenetic datasets to analyze the affinities of Teleocrater: one published by Nesbitt himself in 2011, [3] and another published by Martín D. Ezcurra in 2016. [6] In addition to Teleocrater, the similarly problematic Yonghesuchus , Dongusuchus, Spondylosoma, and Scleromochlus were also added to the dataset in order to test their relationships. Analyses based on both datasets consistently recovered a monophyletic group containing Teleocrater, Yarasuchus, Dongusuchus, and Spondylosoma, with Spondylosoma forming the sister group to a polytomy containing the other three. This group is differentiated from other archosauriforms by fifteen shared characters, one of them an unambiguous synapomorphy (the overhang of the cervical neural spines). Nesbitt et al. named this group the Aphanosauria, defined as the most inclusive clade containing Teleocrater rhadinus and Yarasuchus deccanensis but not Passer domesticus or Crocodylus niloticus . The results of the analyses are reproduced below, based primarily on the Ezcurra dataset but incorporating the avemetatarsalian topology of the Nesbitt dataset. [1]
The inclusion of Scleromochlus altered the topology obtained to varying extents, although both analyses recovered it as an avemetatarsalian. In the Nesbitt dataset, Scleromochlus collapsed Avemetatarsalia into a polytomy containing itself, Spondylosoma, the other aphanosaurians, pterosaurs, lagerpetids, and dinosauriforms. Meanwhile, in the Ezcurra dataset, Scleromochlus formed a polytomy with lagerpetids and dinosauriforms. Nesbitt et al. emphasized that characteristics of pelvic and leg anatomy could not be assessed for Scleromochlus due to conflicting descriptions [19] [20] and poor quality of skeletal casts; these characteristics play a substantial role in the topology of basal avemetatarsalians. [1] [3] [6] [17] [19] [20] [21]
Traditionally, the "crocodile-normal" and "advanced mesotarsal" ankle arrangements have been considered as a dichotomy among archosaurs: early archosaurs and pseudosuchians possess the more mobile "crocodile-normal" configuration, while pterosaurs and dinosauromorphs (including birds) possess the stiffer "advanced mesotarsal" configuration. [19] [22] [23] The presence of the "crocodile-normal" ankle in Teleocrater (convex joint with the astragalus, presence of a tuber, and the convexity of the fibular facet on the calcaneum) indicates that this configuration was probably plesiomorphic for archosaurs, including avemetatarsalians, supported by reconstructions of character state evolution using the two datasets. At the same time, features associated with the "advanced mesotarsal" ankle (lack of a tuber and the concavity of the fibular facet on the calcaneum) were reconstructed as having appeared at least two different times among ornithodirans, with basal dinosaurs also possessing a mixture of "crocodile-normal" and "advanced mesotarsal" characteristics. This demonstrates that the evolution of ankle morphology in avemetatarsalians is more complex than previously thought, and led Nesbitt et al. to conclude that the strict "crocodile-normal"/"advanced mesotarsal" dichotomy is reductionist. [1]
Nesbitt et al. examined cross-sections from the fibula of Teleocrater. The cortical bone was thin, measuring about 1–1.5 millimetres (0.039–0.059 in) thick. Primary woven-fibered bone with no signs of remodeling comprises the entirety of the cortex, and the vascular canals are all longitudinal primary osteons, arranged in some parts as concentric bands within the cortex; parallel-fibered bone and radial osteons are present locally. Disorganized osteocytes were abundant in the cortex. The outer cortex contains lines of arrested growth, but does not contain an external fundamental system (an indicator of maturity). The humerus was similar, albeit with many of the longitudinal osteons being anastomotically linked. [1]
Similar results were reached by Ricqlès et al., who analyzed a cross-section from a metatarsal. The cortex likewise consists entirely of the primary layer, with the vascular canals consisting of longitudinal osteons that are less dense in the peripheries of the cortex. The interior medullary cavity of the bone is occupied by dense spongy endosteum; the trabecula is missing. [18] Overall, histology suggests that specimens of Teleocrater were rapidly growing at time of death. The dense vasularization, anastomosis in the humerus, and disorganization of osteocytes indicates a growth rate higher than more basal archosaurs [24] and comparable to silesaurids, [25] [26] but less than that of Nyasasaurus, [7] pterosaurs, and dinosaurs. [1] [27] [28]
In Bonebed Z183, from where the newer specimens of Teleocrater (and possibly the type specimen) are known, the fauna can generally divided into two types. Larger bones originate from the dicynodont Dolichuranus sp. and the cynodont Cynognathus sp. ; [29] they tend to be closely associated and semi-articulated, suggesting minimal transportation by water after death. Smaller bones originate from Teleocrater rhadinus, the temnospondyl "Stanocephalosaurus" pronus, an unnamed allokotosaurian, and another unnamed small reptile; they tend to be more fragmented, suggesting that they were worn and transported by several floods before they were finally deposited. Overall, the preservational environment is consistent with the crevasse splay of a floodplain, [30] where the animals were killed and transported by sheetfloods before being buried by the crevasse splay complex. [31] Elsewhere in the assemblage of the lower Lifua Member, the ctenosauriscid Hypselorhachis mirabilis is also present. [1] [14]
Nyasasaurus is an extinct genus of avemetatarsalian archosaur from the putatively Middle Triassic Manda Formation of Tanzania that may be the earliest known dinosaur. The type species Nyasasaurus parringtoni was first described in 1956 in the doctoral thesis of English paleontologist Alan J. Charig, but it was not formally described until 2013.
Avemetatarsalia is a clade of diapsid reptiles containing all archosaurs more closely related to birds than to crocodilians. The two most successful groups of avemetatarsalians were the dinosaurs and pterosaurs. Dinosaurs were the largest terrestrial animals for much of the Mesozoic Era, and one group of small feathered dinosaurs has survived up to the present day. Pterosaurs were the first flying vertebrates and persisted through the Mesozoic before dying out at the Cretaceous-Paleogene (K-Pg) extinction event. Both dinosaurs and pterosaurs appeared in the Triassic Period, shortly after avemetatarsalians as a whole. The name Avemetatarsalia was first established by British palaeontologist Michael Benton in 1999. An alternate name is Pan-Aves, or "all birds", in reference to its definition containing all animals, living or extinct, which are more closely related to birds than to crocodilians.
Pterosauromorpha is one of the two basic divisions of Ornithodira that includes pterosaurs and all taxa that are closer to them than to dinosaurs and their close relatives. In addition to pterosaurs, Pterosauromorpha also includes the basal clade Lagerpetidae and some other Late Triassic ornithodirans.
Yarasuchus is an extinct genus of avemetatarsalian archosaur that lived during the Anisian stage of the Middle Triassic of India. The genus was named and described in 2005 from a collection of disarticulated but fairly complete fossil material found from the Middle Triassic Yerrapalli Formation. The material is thought to be from two individuals, possibly three, with one being much more complete and articulated than the other. The type and only species is Y. deccanensis. Yarasuchus was a quadruped roughly 2–2.5 metres (6.6–8.2 ft) long, with an elongated neck and tall spines on its vertebrae. Unlike other quadrupedal Triassic reptiles, the limbs and shoulders of Yarasuchus were slender, and more like those of ornithodirans.
Dongusuchus is an extinct genus of archosaur. Fossils have been found from the Donguz Formation outcropping on the banks of the Donguz River in the Orenburg Oblast of Russia. They are associated with a fossil assemblage called the Eryosuchus Fauna, named after the capitosaurid Eryosuchus, the most common organism found from the assemblage. The locality dates back to the Anisian and early Ladinian stages of the Middle Triassic.
Sterling Nesbitt is an American paleontologist best known for his work on the origin and early evolutionary patterns of archosaurs. He is currently an associate professor at Virginia Tech in the Department of Geosciences.
Asilisaurus ; from Swahili, asili, and Greek, σαυρος is an extinct genus of silesaurid archosaur. The type species is Asilisaurus kongwe.Asilisaurus fossils were uncovered in the Manda Beds of Tanzania and date back to the early Carnian, making it one of the oldest known members of the Avemetatarsalia. It was the first non-dinosaurian dinosauriform recovered from Africa. The discovery of Asilisaurus has provided evidence for a rapid diversification of avemetatarsalians during the Middle Triassic, with the diversification of archosaurs during this time previously only documented in pseudosuchians.
Lagerpetidae is a family of basal avemetatarsalians. Though traditionally considered the earliest-diverging dinosauromorphs, fossils described in 2020 suggest that lagerpetids may instead be pterosauromorphs. Lagerpetid fossils are known from theTriassic of Argentina, Arizona, Brazil, Madagascar, New Mexico, and Texas. They were typically small, although some lagerpetids, like Dromomeron gigas and a specimen from the Santa Rosa Formation attributed to Dromomeron sp., were able to get quite large. Lagerpetid fossils are rare; the most common finds are bones of the hindlimbs, which possessed a number of unique features.
Suchia is a clade of archosaurs containing the majority of pseudosuchians. It was defined as the least inclusive clade containing Aetosaurus ferratus, Rauisuchus tiradentes, Prestosuchus chiniquensis, and Crocodylus niloticus by Nesbitt (2011). Generally the only pseudosuchian group which is omitted from Suchia is the family Ornithosuchidae, although at least one analysis classifies ornithosuchids as close relatives of erpetosuchids and aetosaurs. Phytosaurs are also excluded from Suchia, although it is not certain whether they qualify as pseudosuchians in the first place.
Poposauroidea is a clade of advanced pseudosuchians. It includes poposaurids, shuvosaurids, ctenosauriscids, and other unusual pseudosuchians such as Qianosuchus and Lotosaurus. It excludes most large predatory quadrupedal "rauisuchians" such as rauisuchids and "prestosuchids". Those reptiles are now allied with crocodylomorphs in a clade known as Loricata, which is the sister taxon to the poposauroids in the clade Paracrocodylomorpha. Although it was first formally defined in 2007, the name "Poposauroidea" has been used for many years. The group has been referred to as Poposauridae by some authors, although this name is often used more narrowly to refer to the family that includes Poposaurus and its close relatives.
The Manda Formation is a Middle Triassic (Anisian?) or possibly Late Triassic (Carnian?) geologic formation in Tanzania. It preserves fossils of many terrestrial vertebrates from the Triassic, including some of the earliest dinosauromorph archosaurs. The formation is often considered to be Anisian in age according to general tetrapod biochronology hypotheses and correlations to the Cynognathus Assemblage Zone of South Africa. However, some recent studies cast doubt to this age, suggesting that parts deposits may actually be younger (Carnian) in age.
Epipophyses are bony projections of the cervical vertebrae found in archosauromorphs, particularly dinosaurs. These paired processes sit above the postzygapophyses on the rear of the vertebral neural arch. Their morphology is variable and ranges from small, simple, hill-like elevations to large, complex, winglike projections. Epipophyses provided large attachment areas for several neck muscles; large epipophyses are therefore indicative of a strong neck musculature.
Lutungutali is an extinct genus of silesaurid dinosauriform from the Middle Triassic of Zambia. The single type species of the genus is Lutungutali sitwensis. Lutungutali was named in 2013 and described from a fossil specimen, holotype NHCC LB32, including hip bones and tail vertebrae. The specimen was collected in 2009 from the upper Ntawere Formation, which dates to the Anisian stage of the Middle Triassic. Lutungutali is the first known silesaurid from Zambia and, along with the Tanzanian silesaurid Asilisaurus and dinosauriform Nyasasaurus, the oldest bird-line archosaur known from body fossils.
Asperoris is an extinct genus of archosauriform reptile known from the Middle Triassic Manda Beds of southwestern Tanzania. It is the first archosauriform known from the Manda Beds that is not an archosaur. However, its relationships with other non-archosaurian archosauriforms are uncertain. It was first named by Sterling J. Nesbitt, Richard J. Butler and David J. Gower in 2013 and the type species is Asperoris mnyama. Asperoris means "rough face" in Latin, referring to the distinctive rough texture of its skull bones.
Nundasuchus is an extinct genus of crurotarsan, possibly a suchian archosaur related to Paracrocodylomorpha. Remains of this genus are known from the Middle Triassic Manda beds of southwestern Tanzania. It contains a single species, Nundasuchus songeaensis, known from a single partially complete skeleton, including vertebrae, limb elements, osteoderms, and skull fragments.
Aphanosauria is an extinct group of reptiles distantly related to dinosaurs. They are at the base of a group known as Avemetatarsalia, one of two main branches of archosaurs. The other main branch, Pseudosuchia, includes modern crocodilians. Aphanosaurs possessed features from both groups, indicating that they are the oldest and most primitive known clade of avemetatarsalians, at least in terms of their position on the archosaur family tree. Other avemetatarsalians include the flying pterosaurs, small bipedal lagerpetids, herbivorous silesaurids, and the incredibly diverse dinosaurs, which survive to the present day in the form of birds. Aphanosauria is formally defined as the most inclusive clade containing Teleocrater rhadinus and Yarasuchus deccanensis but not Passer domesticus or Crocodylus niloticus. This group was first recognized during the description of Teleocrater. Although only known by a few genera, Aphanosaurs had a widespread distribution across Pangaea in the Middle Triassic. They were fairly slow quadrupedal long-necked carnivores, a biology more similar to basal archosaurs than to advanced avemetatarsalians such as pterosaurs, lagerpetids, and early dinosaurs. In addition, they seemingly possess 'crocodile-normal' ankles, showing that 'advanced mesotarsal' ankles were not basal to the whole clade of Avemetatarsalia. Nevertheless, they possessed elevated growth rates compared to their contemporaries, indicating that they grew quickly, more like birds than other modern reptiles. Despite superficially resembling lizards, the closest modern relatives of aphanosaurs are birds.
Polymorphodon is an extinct genus of archosauriform reptile from the Middle Triassic of Germany. The only known species is Polymorphodon adorfi, discovered in Lower Keuper deposits at a quarry in Eschenau, Germany. Polymorphodon is notable for its heterodont dentition, with long and conical premaxillary teeth followed by thin maxillary teeth with large serrations. Maxillary teeth near the back of the mouth are short and leaf-shaped, similar to some living and extinct reptiles with a herbivorous or omnivorous diet. This may suggest that Polymorphodon had some reliance on plants in its diet, a rarity among basal archosauriforms, most of which are carnivores.
Kongonaphon is an extinct genus of lagerpetid avemetatarsalians from the Middle to Late Triassic of Madagascar. It contains a single species, Kongonaphon kely, which is known from a fragmentary partial skeleton. This fossil hails from the late Ladinian or early Carnian-age "basal Isalo II beds". As the first lagerpetid found in Africa, Kongonaphon extends the range of the family significantly. It possessed a combination of features from various other lagerpetids, but developed particularly long and slender leg bones. Kongonaphon is also the first lagerpetid for which fossils of the snout and teeth are known. It was likely an insectivore based on the shape and texture of its teeth.
Incertovenator is an extinct genus of archosauriform reptile, likely an archosaur, of uncertain affinities. Its unstable position is a result of possessing a number features found in both the bird-line avemetatarsalian archosaurs and the crocodylian-line pseudosuchians. The type and only known species is I. longicollum, which is known from single specimen discovered in the Late Triassic Ischigualasto Formation of Argentina. Incertovenator is known almost entirely by its vertebral column. This indicates that it had a relatively long neck, leading to its uncertain classification due to the convergent evolution of elongated neck vertebrae in both avemetatarsalian and pseudosuchian archosaurs.
Venetoraptor is an extinct genus of lagerpetid archosaurs from the Late Triassic Santa Maria Formation of Rio Grande do Sul, Brazil. The genus contains a single species, V. gassenae, known from a partial skeleton.