Stretched Rohini Satellite Series

Last updated
Stretched Rohini Satellite Series
Manufacturer ISRO
Country of origin India
Operator ISRO
Applications Gamma ray astronomy
Specifications
Launch mass106–150 kilograms (234–331 lb)
Power~100 watts
BatteriesNi-Cd
EquipmentGamma-Ray Burst
Retarded Potential Analyser[ citation needed ]
Regime Low Earth
Design life2 years
Dimensions
Production
StatusRetired
Built4
Launched4
Retired1
Lost3
Maiden launch SROSS-A/SROSS-1
24 March 1987
Last launch SROSS-C2
4 May 1994
Related spacecraft
Derived from Rohini

The Stretched Rohini Satellite Series (SROSS) are a series of satellites developed by the Indian Space Research Organisation as follow ons to the Rohini Satellites [1] for conducting astrophysics, Earth Remote Sensing, and upper atmospheric monitoring experiments as well as for new and novel application-oriented missions. [2] These satellites were the payload of the developmental flights of the Augmented Satellite Launch Vehicle. [1]

Contents

Satellites in series

SROSS A and SROSS B

The first two satellites in the series did not make it into orbit due to launch vehicle failure. SROSS-A carried two retro-reflectors for laser tracking. [1] SROSS-B carried two instruments; a West German Monocular Electro Optical Stereo Scanner (MEOSS) and ISRO's 20-3000keV Gamma-ray Burst Experiment (GRB). [1]

SROSS C

The third, SROSS 3 (also known as SROSS C), attained a lower-than-planned orbit on 20 May 1992. The GRB monitored celestial gamma ray bursts in the energy range 20–3000 keV. SROSS C and C2 carried a gamma-ray burst (GRB) experiment and a Retarded Potential Analyzer (RPA) experiment. The GRB experiment operated from 25 May 1992 until reentry on 14 July 1992. The instrument consisted of a main and a redundant CsI(Na) scintillator operating in the energy range 20–3000 keV. The crystals were 76 mm (main) and 37 mm (redundant) in diameter. Each had a thickness of 12.5 mm. A 'burst mode' was triggered by the 100–1024 keV count rate exceeding a preset limit during a 256 or 1024 ms time integration. In this mode, 65 s of temporal and 2 s of spectral data prior to the trigger are stored, as well as the subsequent 16 s of spectral data and 204 s of temporal data. The low resolution data consists of two energy channels (20–100 keV and 100–1024 keV) from 65 s before the trigger to 204 s after the trigger in 256 ms integrations. The 20–1024 keV rates are also recorded with a 2 ms resolution for 1 s prior to 1 s after trigger and a 16 ms resolution for 1s prior to 8 s after the trigger. Energy spectra are conducted with a 124 channel PHA. Four pre-trigger spectra and 32 post-trigger spectra are recorded for every burst with a 512 ms integration time. [3] The RPA measured temperature, density and characteristics of electrons in the Earth's ionosphere. [1] The GRB experiment computer system used the RCA CDP1802 microprocessor. [4]

SROSS C2

SROSS-C2 was launched on 4 May 1994. The gamma ray burst experiments on board SROSS-C2 are an improved version of the GRB payload flown successfully on the SROSS-C satellite. The improvements include enhancements of the on-board memory and a better measurement of the background spectra after a burst event. These improvements led to the discovery of twelve candidate events detected up to 15 February 1995, out of a total of 993 triggers. [3] The SROSS-C2 spacecraft is one of the satellites included in the Interplanetary Network [5] The SROSS C2 satellite also used an RCA CDP1802 microprocessor for the GRB experiment. [6]

See also

Related Research Articles

<span class="mw-page-title-main">X-ray astronomy</span> Branch of astronomy that uses X-ray observation

X-ray astronomy is an observational branch of astronomy which deals with the study of X-ray observation and detection from astronomical objects. X-radiation is absorbed by the Earth's atmosphere, so instruments to detect X-rays must be taken to high altitude by balloons, sounding rockets, and satellites. X-ray astronomy uses a type of space telescope that can see x-ray radiation which standard optical telescopes, such as the Mauna Kea Observatories, cannot.

<span class="mw-page-title-main">BeppoSAX</span> Italian-Dutch satellite used for X-ray astronomy

BeppoSAX was an Italian–Dutch satellite for X-ray astronomy which played a crucial role in resolving the origin of gamma-ray bursts (GRBs), the most energetic events known in the universe. It was the first X-ray mission capable of simultaneously observing targets over more than 3 decades of energy, from 0.1 to 300 kiloelectronvolts (keV) with relatively large area, good energy resolution and imaging capabilities. BeppoSAX was a major programme of the Italian Space Agency (ASI) with the participation of the Netherlands Agency for Aerospace Programmes (NIVR). The prime contractor for the space segment was Alenia while Nuova Telespazio led the development of the ground segment. Most of the scientific instruments were developed by the Italian National Research Council (CNR) while the Wide Field Cameras were developed by the Netherlands Institute for Space Research (SRON) and the LECS was developed by the astrophysics division of the European Space Agency's ESTEC facility.

High Energy Transient Explorer 1 (HETE-1) was a NASA astronomical satellite with international participation.

<span class="mw-page-title-main">Fermi Gamma-ray Space Telescope</span> Space telescope for gamma-ray astronomy launched in 2008

The Fermi Gamma-ray Space Telescope, formerly called the Gamma-ray Large Area Space Telescope (GLAST), is a space observatory being used to perform gamma-ray astronomy observations from low Earth orbit. Its main instrument is the Large Area Telescope (LAT), with which astronomers mostly intend to perform an all-sky survey studying astrophysical and cosmological phenomena such as active galactic nuclei, pulsars, other high-energy sources and dark matter. Another instrument aboard Fermi, the Gamma-ray Burst Monitor, is being used to study gamma-ray bursts and solar flares.

<span class="mw-page-title-main">Compton Gamma Ray Observatory</span> NASA space observatory designed to detect X-rays and gamma rays (1991–2000)

The Compton Gamma Ray Observatory (CGRO) was a space observatory detecting photons with energies from 20 keV to 30 GeV, in Earth orbit from 1991 to 2000. The observatory featured four main telescopes in one spacecraft, covering X-rays and gamma rays, including various specialized sub-instruments and detectors. Following 14 years of effort, the observatory was launched from Space Shuttle Atlantis during STS-37 on April 5, 1991, and operated until its deorbit on June 4, 2000. It was deployed in low Earth orbit at 450 km (280 mi) to avoid the Van Allen radiation belt. It was the heaviest astrophysical payload ever flown at that time at 16,300 kilograms (35,900 lb).

<span class="mw-page-title-main">Reuven Ramaty High Energy Solar Spectroscopic Imager</span> NASA satellite of the Explorer program

Reuven Ramaty High Energy Solar Spectroscopic Imager was a NASA solar flare observatory. It was the sixth mission in the Small Explorer program (SMEX), selected in October 1997 and launched on 5 February 2002, at 20:58:12 UTC. Its primary mission was to explore the physics of particle acceleration and energy release in solar flares.

<span class="mw-page-title-main">Neil Gehrels Swift Observatory</span> NASA satellite of the Explorer program

Neil Gehrels Swift Observatory, previously called the Swift Gamma-Ray Burst Explorer, is a NASA three-telescope space observatory for studying gamma-ray bursts (GRBs) and monitoring the afterglow in X-ray, and UV/Visible light at the location of a burst. It was launched on 20 November 2004, aboard a Delta II launch vehicle. Headed by principal investigator Neil Gehrels until his death in February 2017, the mission was developed in a joint partnership between Goddard Space Flight Center (GSFC) and an international consortium from the United States, United Kingdom, and Italy. The mission is operated by Pennsylvania State University as part of NASA's Medium Explorer program (MIDEX).

The InterPlanetary Network (IPN) is a group of spacecraft equipped with gamma ray burst (GRB) detectors. By timing the arrival of a burst at several spacecraft, its precise location can be found. The precision for determining the direction of a GRB in the sky is improved by increasing the spacing of the detectors, and also by more accurate timing of the reception. Typical spacecraft baselines of about one AU and time resolutions of tens of milliseconds can determine a burst location within several arcminutes, allowing follow-up observations with other telescopes.

<span class="mw-page-title-main">Neil Gehrels</span> American astrophysicist

Cornelis A. "Neil" Gehrels was an American astrophysicist specializing in the field of gamma-ray astronomy. He was Chief of the Astroparticle Physics Laboratory at NASA's Goddard Space Flight Center (GSFC) from 1995 until his death, and was best known for his work developing the field from early balloon instruments to today's space observatories such as the NASA Swift mission, for which he was the principal investigator. He was leading the WFIRST wide-field infrared telescope forward toward a launch in the mid-2020s. He was a member of the National Academy of Sciences and the American Academy of Arts and Sciences.

<span class="mw-page-title-main">Granat</span> 1989 Soviet space observatory

The International Astrophysical Observatory "GRANAT", was a Soviet space observatory developed in collaboration with France, Denmark and Bulgaria. It was launched on 1 December 1989 aboard a Proton rocket and placed in a highly eccentric four-day orbit, of which three were devoted to observations. It operated for almost nine years.

<span class="mw-page-title-main">HETE 2</span> NASA satellite of the Explorer program

High Energy Transient Explorer 2 was a NASA astronomical satellite with international participation. The satellite bus for the first HETE-1 was designed and built by AeroAstro, Inc. of Herndon, Virginia and was lost during launch on 4 November 1996; the replacement satellite, HETE-2 was built by Massachusetts Institute of Technology (MIT) based on the original HETE design.

<span class="mw-page-title-main">GRB 970508</span> Gamma-ray burst detected on May 8, 1997

GRB 970508 was a gamma-ray burst (GRB) detected on May 8, 1997, at 21:42 UTC; it is historically important as the second GRB with a detected afterglow at other wavelengths, the first to have a direct redshift measurement of the afterglow, and the first to be detected at radio wavelengths.

The history of gamma-ray began with the serendipitous detection of a gamma-ray burst (GRB) on July 2, 1967, by the U.S. Vela satellites. After these satellites detected fifteen other GRBs, Ray Klebesadel of the Los Alamos National Laboratory published the first paper on the subject, Observations of Gamma-Ray Bursts of Cosmic Origin. As more and more research was done on these mysterious events, hundreds of models were developed in an attempt to explain their origins.

X-ray emission occurs from many celestial objects. These emissions can have a pattern, occur intermittently, or as a transient astronomical event. In X-ray astronomy many sources have been discovered by placing an X-ray detector above the Earth's atmosphere. Often, the first X-ray source discovered in many constellations is an X-ray transient. These objects show changing levels of X-ray emission. NRL astronomer Dr. Joseph Lazio stated: " ... the sky is known to be full of transient objects emitting at X- and gamma-ray wavelengths, ...". There are a growing number of recurrent X-ray transients. In the sense of traveling as a transient, the only stellar X-ray source that does not belong to a constellation is the Sun. As seen from Earth, the Sun moves from west to east along the ecliptic, passing over the course of one year through the twelve constellations of the Zodiac, and Ophiuchus.

<span class="mw-page-title-main">X-ray astronomy detector</span> X-ray detectors used in X-ray astronomy

X-ray astronomy detectors are instruments that detect X-rays for use in the study of X-ray astronomy.

<span class="mw-page-title-main">History of X-ray astronomy</span>

The history of X-ray astronomy begins in the 1920s, with interest in short wave communications for the U.S. Navy. This was soon followed by extensive study of the earth's ionosphere. By 1927, interest in the detection of X-ray and ultraviolet (UV) radiation at high altitudes inspired researchers to launch Goddard's rockets into the upper atmosphere to support theoretical studies and data gathering. The first successful rocket flight equipped with instrumentation able to detect solar ultraviolet radiation occurred in 1946. X-ray solar studies began in 1949. By 1973 a solar instrument package orbited on Skylab providing significant solar data.

The Space Variable Objects Monitor (SVOM) is a planned small X-ray telescope satellite under development by China National Space Administration (CNSA), Chinese Academy of Sciences (CAS) and the French Space Agency (CNES), to be launched in March 2024.

<span class="mw-page-title-main">Ultra-Fast Flash Observatory Pathfinder</span>

The Ultra-Fast Flash Observatory (UFFO) Pathfinder is a space observatory measuring prompt emission of gamma-ray bursts (GRB) both in optical/UV and in X-ray range down to sub-second timescales for the first time. Instead of turning the whole satellite towards GRB location like the Swift Gamma-Ray Burst Mission, UFFO employs a slewing mirror telescope approach – the optical path of the telescope is changed by rotation of motorized mirror within ~1 second after burst was detected.

<span class="mw-page-title-main">Minisat 01</span> Spanish satellite

The Minisat 01 was a satellite developed in Spain as means to kickstart its space program. The project started in 1990 and was funded by both the Inter-Ministerial Committee of Space Science and Technology (CICYT) and the Instituto Nacional de Técnica Aeroespacial (INTA) who was also responsible for the project's management. After some feasibility studies, the satellite entered design phase in 1993. The main objectives of the program were to develop a technology demonstrator to test and develop the nation's capabilities to produce and manage spacecraft. To this end, INTA teamed up with private enterprises and universities to acquire funds and resources. Nonetheless, emphasis was also put on keeping the costs to a minimum and to ensure affordability.

SROSS-C2 or Stretched Rohini Satellite Series C2 was a satellite developed by the Indian Space Research Organisation. It conducted research on Gamma Ray Bursts in Low Earth Orbit. It was launched on 4 May 1994 using an ASLV rocket from Satish Dhawan Space Centre.

References

  1. 1 2 3 4 5 "SROSS A, B, C, C2 Quicklook". Archived from the original on 2009-04-11. Retrieved 2009-07-19.
  2. "SROSS". Archived from the original on December 28, 2016.
  3. 1 2 "Stretched Rohini Satellite Series 3 & C2".
  4. "Cosmic gamma ray bursts - Recent developments and observations from SROSS satellites" (PDF). Current Science Research Journal. 10 Nov 1995.
  5. "IPN3 Home Page".
  6. Kasturirangan, K.; Padmini, V. N.; Prasad, N. L.; Rao, U. R.; Seetha, S. (7 Aug 1995). "Recent gamma-ray burst observations from the SROSS-C2 satellite". Astronomy and Astrophysics. 322: 778. Bibcode:1997A&A...322..778K.