Tet methylcytosine dioxygenase 1

Last updated
TET1
Identifiers
Aliases TET1 , CXXC6, LCX, bA119F7.1, MLL-TET1-MLL, Tet methylcytosine dioxygenase 1
External IDs OMIM: 607790 MGI: 1098693 HomoloGene: 12735 GeneCards: TET1
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_030625

NM_001253857
NM_027384

RefSeq (protein)

NP_085128

NP_001240786
NP_001393310
NP_001393311
NP_001393312

Contents

Location (UCSC) Chr 10: 68.56 – 68.69 Mb Chr 10: 62.64 – 62.74 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Ten-eleven translocation methylcytosine dioxygenase 1 (TET1) is a member of the TET family of enzymes, in humans it is encoded by the TET1 gene. Its function, regulation, and utilizable pathways remain a matter of current research while it seems to be involved in DNA demethylation and therefore gene regulation. [5] [6]

Discovery

TET1 was first discovered in a 61-year-old patient with a rare variation of t(10;11)(q22;q23) acute myeloid leukemia (AML) as a zinc-finger binding protein (specifically on the CXXC domain) that fuses to the gene MLL. [7] Another study confirmed that this protein was a translocation partner of MLL in an 8-year-old patient with t(10;11)(q22;q23) AML and named the protein Ten-Eleven Translocation 1. [8]

Function

TET1 catalyzes the conversion of the modified DNA base 5-methylcytosine (5-mC) to 5-hydroxymethylcytosine (5-hmC). [9]

Reaction catalyzed by Tet methylcytosine dioxygenase 1 - en.svg

TET1 produces 5-hmC by oxidation of 5-mC in an iron and alpha-ketoglutarate dependent manner. [10] The conversion of 5-mC to 5-hmC has been proposed as the initial step of active DNA demethylation in mammals. [10] Additionally, downgrading TET1 has decreased levels of 5-formylcytosine (5-fC) and 5-carboxylcytosine (5-caC) in both cell cultures and mice. [10]

A site with a 5-hmC base already has increased transcriptional activity, a state termed "functional demethylation". This state is common in post-mitotic neurons. [11]

TET1 may play a role in memory extinction. TET1-knockout mice show markedly impaired memory extinction, despite maintaining normal memory acquisition. [12]

Applications

TET1 appears to facilitate nuclear reprogramming of somatic cells to iPS cells. [13] [14]

The enzyme is also utilized as part of TET-Assisted Bisulfite Sequencing (TAB-seq) to quantify levels of hydroxymethylation in the genome and to distinguish 5-hydroxymethylcytosine (5hmc) from 5-methylcytosine (5mc) at single base resolution. The technique was developed by Chuan He and rectifies the inability of traditional bisulfite sequencing to decipher between the two modified bases. In this technique, TET1 is responsible for the oxidation of 5mc allowing it to be read as thymine following treatment with bisulfite. This is not the case for 5hmc as it is glucosylated in the initial step inhibiting its oxidation by TET1.

Clinical significance

Patients with schizophrenia or bipolar disorder have shown increased levels of TET1 mRNA and protein expression in the inferior parietal lobule, indicating these diseases may be caused by mistakes in gene expression regulation. [15]

Colon, breast, prostate and liver tumors have significantly reduced levels of TET1 compared to the healthy colon cells and normal epithelial colon cells with downgraded TET1 levels have greater levels of proliferation. [16] [17] [18] [19] Additionally, increasing TET1 expression levels in colon cancer cells decreased cell proliferation in both cell cultures and mice through demethylation of promoters of the WNT signaling pathway. [17]

Breast cancer cell lines with silenced TET1 expression have increased rates of invasion and breast cancers that spread to the lymph nodes are characterized by lower TET1 levels. [20] TET1 levels could be used to detect breast cancer metastasis. [20] A histone deacetylase inhibitor Trichostatin A increased levels of TET1 in breast cancer tissues but was a less effective tumor suppressor in patients with low TET1 expression. [21] Breast cancer patients with high TET1 levels had significantly higher survival probabilities than patients with low TET1 levels. [19]

Degradation of TET1 in hypoxia-induced EMT lung cancer cells led to reduced metastasis rates and cells. [22] Healthy cells transitioning to cancer cells have decreased levels of TET1 but decreasing TET1 expression does not lead to malignancy. [23] Cancer cells using the KRAS pathway had decreased invasive potential after reintroducing TET1, likewise downgrading KRAS increased TET1 levels. [24]

Related Research Articles

<span class="mw-page-title-main">5-Methylcytosine</span> Chemical compound which is a modified DNA base

5-Methylcytosine is a methylated form of the DNA base cytosine (C) that regulates gene transcription and takes several other biological roles. When cytosine is methylated, the DNA maintains the same sequence, but the expression of methylated genes can be altered. 5-Methylcytosine is incorporated in the nucleoside 5-methylcytidine.

<span class="mw-page-title-main">CpG site</span> Region of often-methylated DNA with a cytosine followed by a guanine

The CpG sites or CG sites are regions of DNA where a cytosine nucleotide is followed by a guanine nucleotide in the linear sequence of bases along its 5' → 3' direction. CpG sites occur with high frequency in genomic regions called CpG islands.

In biology, reprogramming refers to erasure and remodeling of epigenetic marks, such as DNA methylation, during mammalian development or in cell culture. Such control is also often associated with alternative covalent modifications of histones.

<span class="mw-page-title-main">Acute myeloblastic leukemia with maturation</span> Medical condition

Acute myeloblastic leukemia with maturation (M2) is a subtype of acute myeloid leukemia (AML).

<span class="mw-page-title-main">RUNX1</span> Protein-coding gene in humans

Runt-related transcription factor 1 (RUNX1) also known as acute myeloid leukemia 1 protein (AML1) or core-binding factor subunit alpha-2 (CBFA2) is a protein that in humans is encoded by the RUNX1 gene.

<span class="mw-page-title-main">HOXA9</span> Protein-coding gene in humans

Homeobox protein Hox-A9 is a protein that in humans is encoded by the HOXA9 gene.

<span class="mw-page-title-main">CBFB</span> Protein-coding gene in the species Homo sapiens

Core-binding factor subunit beta is a protein that in humans is encoded by the CBFB gene.

<span class="mw-page-title-main">KMT2A</span> Protein-coding gene in the species Homo sapiens

Histone-lysine N-methyltransferase 2A, also known as acute lymphoblastic leukemia 1 (ALL-1), myeloid/lymphoid or mixed-lineage leukemia1 (MLL1), or zinc finger protein HRX (HRX), is an enzyme that in humans is encoded by the KMT2A gene.

<span class="mw-page-title-main">SEPT9</span> Protein-coding gene in the species Homo sapiens

Septin-9 is a protein that in humans is encoded by the SEPT9 gene.

<span class="mw-page-title-main">PICALM</span> Protein-coding gene in the species Homo sapiens

Phosphatidylinositol binding clathrin assembly protein, also known as PICALM, is a protein which in humans is encoded by the PICALM gene.

<span class="mw-page-title-main">MLLT3</span> Protein-coding gene in the species Homo sapiens

Protein AF-9 is a protein that in humans is encoded by the MLLT3 gene.

<span class="mw-page-title-main">MLLT1</span> Protein-coding gene in the species Homo sapiens

Protein ENL is a protein that in humans is encoded by the MLLT1 gene.

<span class="mw-page-title-main">MLL4</span> Protein-coding gene in the species Homo sapiens

Myeloid/lymphoid or mixed-lineage leukemia 4, also known as MLL4, is a human gene.

<span class="mw-page-title-main">DNA demethylation</span> Removal of a methyl group from one or more nucleotides within a DNA molecule.

For molecular biology in mammals, DNA demethylation causes replacement of 5-methylcytosine (5mC) in a DNA sequence by cytosine (C). DNA demethylation can occur by an active process at the site of a 5mC in a DNA sequence or, in replicating cells, by preventing addition of methyl groups to DNA so that the replicated DNA will largely have cytosine in the DNA sequence.

<span class="mw-page-title-main">5-Hydroxymethylcytosine</span> Chemical compound

5-Hydroxymethylcytosine (5hmC) is a DNA pyrimidine nitrogen base derived from cytosine. It is potentially important in epigenetics, because the hydroxymethyl group on the cytosine can possibly switch a gene on and off. It was first seen in bacteriophages in 1952. However, in 2009 it was found to be abundant in human and mouse brains, as well as in embryonic stem cells. In mammals, it can be generated by oxidation of 5-methylcytosine, a reaction mediated by TET enzymes. Its molecular formula is C5H7N3O2.

<span class="mw-page-title-main">Tet methylcytosine dioxygenase 2</span> Human gene

Tet methylcytosine dioxygenase 2 (TET2) is a human gene. It resides at chromosome 4q24, in a region showing recurrent microdeletions and copy-neutral loss of heterozygosity (CN-LOH) in patients with diverse myeloid malignancies.

AI-10-49 is a small molecule inhibitor of leukemic oncoprotein CBFβ-SMHHC developed by the laboratory of John Bushweller with efficacy demonstrated by the laboratories of Lucio H. Castilla and Monica Guzman. AI-10-49 allosterically binds to CBFβ-SMMHC and disrupts protein-protein interaction between CBFβ-SMMHC and tumor suppressor RUNX1. This inhibitor is under development as an anti-leukemic drug.

<span class="mw-page-title-main">Tet methylcytosine dioxygenase 3</span> Protein-coding gene in the species Homo sapiens

Tet methylcytosine dioxygenase 3 is a protein that in humans is encoded by the TET3 gene.

Anjana Rao is a cellular and molecular biologist of Indian ethnicity, working in the US. She uses immune cells as well as other types of cells to understand intracellular signaling and gene expression. Her research focuses on how signaling pathways control gene expression.

<span class="mw-page-title-main">TET enzymes</span> Family of translocation methylcytosine dioxygenases

The TET enzymes are a family of ten-eleven translocation (TET) methylcytosine dioxygenases. They are instrumental in DNA demethylation. 5-Methylcytosine is a methylated form of the DNA base cytosine (C) that often regulates gene transcription and has several other functions in the genome.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000138336 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000047146 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. "Entrez Gene: Tet methylcytosine dioxygenase 1" . Retrieved 2012-07-26.
  6. Coulter JB, O'Driscoll CM, Bressler JP (October 2013). "Hydroquinone increases 5-hydroxymethylcytosine formation through ten eleven translocation 1 (TET1) 5-methylcytosine dioxygenase". The Journal of Biological Chemistry. 288 (40): 28792–28800. doi: 10.1074/jbc.M113.491365 . PMC   3789975 . PMID   23940045.
  7. Ono R, Taki T, Taketani T, Taniwaki M, Kobayashi H, Hayashi Y (July 2002). "LCX, leukemia-associated protein with a CXXC domain, is fused to MLL in acute myeloid leukemia with trilineage dysplasia having t(10;11)(q22;q23)". Cancer Research. 62 (14): 4075–4080. PMID   12124344.
  8. Lorsbach RB, Moore J, Mathew S, Raimondi SC, Mukatira ST, Downing JR (March 2003). "TET1, a member of a novel protein family, is fused to MLL in acute myeloid leukemia containing the t(10;11)(q22;q23)". Leukemia. 17 (3): 637–641. doi:10.1038/sj.leu.2402834. PMID   12646957. S2CID   1202064.
  9. Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y, et al. (May 2009). "Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1". Science. 324 (5929): 930–935. Bibcode:2009Sci...324..930T. doi:10.1126/science.1170116. PMC   2715015 . PMID   19372391.
  10. 1 2 3 Ito S, Shen L, Dai Q, Wu SC, Collins LB, Swenberg JA, et al. (September 2011). "Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine". Science. 333 (6047): 1300–1303. Bibcode:2011Sci...333.1300I. doi:10.1126/science.1210597. PMC   3495246 . PMID   21778364.
  11. Mellén M, Ayata P, Heintz N (September 2017). "5-hydroxymethylcytosine accumulation in postmitotic neurons results in functional demethylation of expressed genes". Proceedings of the National Academy of Sciences of the United States of America. 114 (37): E7812–E7821. Bibcode:2017PNAS..114E7812M. doi: 10.1073/pnas.1708044114 . PMC   5604027 . PMID   28847947.
  12. Rudenko A, Dawlaty MM, Seo J, Cheng AW, Meng J, Le T, et al. (September 2013). "Tet1 is critical for neuronal activity-regulated gene expression and memory extinction". Neuron. 79 (6): 1109–1122. doi:10.1016/j.neuron.2013.08.003. PMC   4543319 . PMID   24050401.
  13. Pera MF (December 2013). "Epigenetics, vitamin supplements and cellular reprogramming". Nature Genetics. 45 (12): 1412–1413. doi:10.1038/ng.2834. PMID   24270443. S2CID   11597504.
  14. Chen J, Gao Y, Huang H, Xu K, Chen X, Jiang Y, et al. (March 2015). "The combination of Tet1 with Oct4 generates high-quality mouse-induced pluripotent stem cells". Stem Cells. 33 (3): 686–698. doi: 10.1002/stem.1879 . PMID   25331067. S2CID   42714024.
  15. Dong E, Gavin DP, Chen Y, Davis J (September 2012). "Upregulation of TET1 and downregulation of APOBEC3A and APOBEC3C in the parietal cortex of psychotic patients". Translational Psychiatry. 2 (9): e159. doi:10.1038/tp.2012.86. PMC   3565208 . PMID   22948384.
  16. Yang H, Liu Y, Bai F, Zhang JY, Ma SH, Liu J, et al. (January 2013). "Tumor development is associated with decrease of TET gene expression and 5-methylcytosine hydroxylation". Oncogene. 32 (5): 663–669. doi:10.1038/onc.2012.67. PMC   3897214 . PMID   22391558.
  17. 1 2 Neri F, Dettori D, Incarnato D, Krepelova A, Rapelli S, Maldotti M, et al. (August 2015). "TET1 is a tumour suppressor that inhibits colon cancer growth by derepressing inhibitors of the WNT pathway". Oncogene. 34 (32): 4168–4176. doi: 10.1038/onc.2014.356 . hdl:2318/150019. PMID   25362856. S2CID   22017396.
  18. Liu C, Liu L, Chen X, Shen J, Shan J, Xu Y, et al. (2013-05-09). "Decrease of 5-hydroxymethylcytosine is associated with progression of hepatocellular carcinoma through downregulation of TET1". PLOS ONE. 8 (5): e62828. Bibcode:2013PLoSO...862828L. doi: 10.1371/journal.pone.0062828 . PMC   3650038 . PMID   23671639.
  19. 1 2 Hsu CH, Peng KL, Kang ML, Chen YR, Yang YC, Tsai CH, et al. (September 2012). "TET1 suppresses cancer invasion by activating the tissue inhibitors of metalloproteinases". Cell Reports. 2 (3): 568–579. doi: 10.1016/j.celrep.2012.08.030 . PMID   22999938.
  20. 1 2 Sang Y, Cheng C, Tang XF, Zhang MF, Lv XB (2015-01-01). "Hypermethylation of TET1 promoter is a new diagnosic marker for breast cancer metastasis". Asian Pacific Journal of Cancer Prevention. 16 (3): 1197–1200. doi: 10.7314/apjcp.2015.16.3.1197 . PMID   25735355.
  21. Lu HG, Zhan W, Yan L, Qin RY, Yan YP, Yang ZJ, et al. (November 2014). "TET1 partially mediates HDAC inhibitor-induced suppression of breast cancer invasion". Molecular Medicine Reports. 10 (5): 2595–2600. doi: 10.3892/mmr.2014.2517 . PMID   25175940.
  22. Tsai YP, Chen HF, Chen SY, Cheng WC, Wang HW, Shen ZJ, et al. (December 2014). "TET1 regulates hypoxia-induced epithelial-mesenchymal transition by acting as a co-activator". Genome Biology. 15 (12): 513. doi: 10.1186/s13059-014-0513-0 . PMC   4253621 . PMID   25517638.
  23. Kudo Y, Tateishi K, Yamamoto K, Yamamoto S, Asaoka Y, Ijichi H, et al. (April 2012). "Loss of 5-hydroxymethylcytosine is accompanied with malignant cellular transformation". Cancer Science. 103 (4): 670–676. doi: 10.1111/j.1349-7006.2012.02213.x . PMC   7659252 . PMID   22320381. S2CID   5823834.
  24. Wu BK, Brenner C (December 2014). "Suppression of TET1-dependent DNA demethylation is essential for KRAS-mediated transformation". Cell Reports. 9 (5): 1827–1840. doi:10.1016/j.celrep.2014.10.063. PMC   4268240 . PMID   25466250.

Further reading