Thinopyrum intermedium

Last updated

Contents

Thinopyrum intermedium
Thinopyrum intermedium field.jpg
Scientific classification OOjs UI icon edit-ltr.svg
Kingdom: Plantae
Clade: Tracheophytes
Clade: Angiosperms
Clade: Monocots
Clade: Commelinids
Order: Poales
Family: Poaceae
Subfamily: Pooideae
Genus: Thinopyrum
Species:
T. intermedium
Binomial name
Thinopyrum intermedium
(Host) Barkworth & D.R. Dewey

Thinopyrum intermedium, known commonly as intermediate wheatgrass, [1] is a sod-forming perennial grass in the Triticeae tribe of Pooideae native to Europe and Western Asia. [2] It is part of a group of plants commonly called wheatgrasses because of the similarity of their seed heads or ears to common wheat. However, wheatgrasses generally are perennial, while wheat is an annual. It has gained the Royal Horticultural Society's Award of Garden Merit as an ornamental. [3]

Trials with intermediate wheatgrass, the product of which is trademarked by the Land Institute as "Kernza", show that it can be grown as a "multi-functional" crop, yielding various commodities as well as ecosystem services. Whereas annuals such as corn tend to deplete soil organic matter and require inputs, a perennial grain such as intermediate wheatgrass can yield crops while building soil organic matter. [4] [5]

Synonyms

Scientific names

Many scientific binomial names have been given to the species Thinopyrum intermedium. Multiple species or subspecies have been described based on different morphologies, like if parts of the plants are pubescent (that is, covered with "hairs") or not. Here is a partial list of the binomial synonyms for Thinopyrum intermedium: [6]

Agropyron aucheri
Agropyron ciliatiflorum
Agropyron gentryi
Agropyron glaucum
Agropyron intermedium
Agropyron podperae
Agropyron pulcherrimum
Agropyron trichophorum
Elymus hispidus
Elytrigia intermedia

Common names

Intermediate wheatgrass is the most widely used common name for Thinopyrum intermedium in the United States. The name "intermediate" probably refers to the height of the plant, which is generally somewhat shorter than T. ponticum known by the common name of "tall wheatgrass".[ citation needed ]

Wild triga is the common name that was given to Thinopyrum intermedium by researchers at The Rodale Institute. The name was intended to distinguish varieties of the species developed for use as a perennial grain crop from forage cultivars which are identified by the common name "intermediate wheatgrass". [7]

Kernza is a trademarked name held by the Land Institute for the processed grains of intermediate wheatgrass. [5]

Origin and distribution

The native range of intermediate wheatgrass extends from central and southeastern Europe to Asia Minor. Although it was first brought to the United States in 1907, the first successful introduction was from the Caucasus region in 1932. [8] The plant can now be found growing wild throughout the Western United States and Western Canada. [6] [9]

T. intermedium is best adapted to: [6] [ failed verification ]

Uses

Forage

Thinopyrum intermedium is among the most productive forage species for the western United States. Because it heads relatively late, it can be grown effectively in mixture with alfalfa to increase its productivity, longevity, and forage quality. It regrows slowly after grazing or cutting, making it best suited to management with a single harvest per year. [10] If multiple harvests are needed per year, other species will be more productive. If managed well, stands can persist for up to 50 years.[ citation needed ]

Habitat

Habitat for wildlife - intermediate wheatgrass can be an excellent food source for grazing and browsing animals. Left unharvested, the vegetation is a good nesting habitat for some birds and waterfowl. Generally, it is not an invasive plant and coexists well with native plant species.[ citation needed ]

Soil management

Soil management by way of erosion control and land rehabilitation are additional uses for this plant. It establishes quickly to form a protective mat of roots and rhizomes, even when planted on soils degraded by earth moving or mining. Within five years, stands have produced up to 7,000 pounds per acre (7,800 kg/ha) of dry root mass in the top 8 inches (20 cm) of soil. [10] Heavy root production holds the soil in place and restores its natural fertility by increasing soil carbon.[ citation needed ]

Grain

Thinopyrum intermedium is a perennial grain crop. In 1983, the Rodale Research Center evaluated close to 100 species of perennial grasses to identify those with good potential for development into perennial grain crops. Intermediate wheatgrass was selected as the most promising species based on flavor, ease of threshing, large seed size, resistance to shattering, lodging resistance, ease of harvest, and perennial growth. [11] Intermediate wheatgrass is nutritionally similar to wheat, and the grain can be ground into flour and used for food products, including muffins, tortillas, pancakes, cookies, crackers, bread, beer and whisky. Some products have been marketed under the trade name Kernza. [12]

Seed production

Although the primary use of Thinopyrum intermedium is as a forage, seed production is essential because farmers and ranchers continue to establish new stands by planting the seed. In 1988 over 500 metric tons (550 short tons) of seed were harvested in Saskatchewan alone, although more recently the harvest has fallen to less than 225 metric tons (248 short tons) in that Canadian province. [13] Average seed yields are about 330 pounds per acre (370 kg/ha), but on-farm yields of up to 880 pounds per acre (990 kg/ha) have been achieved. Seed is generally produced in rows spaced 30 to 36 inches (76 to 91 cm) apart. The wide row spacing (relative to grain crops like wheat) allows for sustained seed yields for five to ten years. Without spacing and occasional tillage between the rows, yields decline rapidly as the plant population becomes increasingly dense through rhizome spread. Despite this, T. intermedium is still considered lesser than wheat by some, as its seeds are comparatively tiny. [14]

Breeding for grain production

Intermediate wheatgrass, Thinopyrum intermedium, has been widely hybridized with wheat in the effort to transfer traits such as disease resistance or perenniality. [15] Transferring leaf rust- and powdery mildew-resistance to wheat has been a special interest. [16] But, attempts to directly domesticate the species into a grain crop did not commence until workers at the Rodale Research Center began to evaluate collections in 1983. [17] In 1989, after assessing 300 collections, the workers selected the best twenty based on grain yield and seed quality. The selected collections were allowed to intermate, and 380 progeny were evaluated between 1991 and 1994. The best eleven plants, plus three from another evaluation, had intermated, causing a second cycle to begin. Seeds from the best plants in the second cycle were passed to scientists at The Land Institute, where the research has continued.

In 2001 and 2002, seed from the first and second breeding cycles of the Rodale Research Center was planted at The Land Institute. In the fall of 2003, 1000 individual plants were dug up and vegetatively propagated to obtain three clones of each plant. The 3000 resulting plants were randomly transplanted to the field on a three foot by three-foot grid. In this manner, genetic differences between plants were separated from environmental influences. In 2005, heads were harvested from every plant and threshed to remove the seeds. The seeds were both counted and weighed to determine the yield per seed head and weight per seed. The fifty plants with the highest yield and largest seed were selected to intermate in 2004.[ citation needed ]

In the fall of 2004, 4000 progeny were planted to establish the second cycle of breeding at The Land Institute. In 2008, these plants were harvested separately by using a power scythe and threshed in a combine. Again the best 50 plants were selected, this time based on yield per head, seed size, shortness, and free-threshing ability.

The selection methods described above have increased seed size and yield by about 10 to 18% per cycle. [18] But perhaps of greater importance has been the discovery of two Mendelian traits. The first is dwarfing, which results in stems about 30 centimetres (1 ft 0 in) shorter than wild-type plants and short, erect leaves. The second is a more subtle change in head shape which results in thick, non-brittle heads and slightly larger seeds. Both of these traits appear to be controlled by dominant genes.

The whole process mentioned above is called mass selection, which is breeding and selecting the best individuals to spawn the next generation. (Mass breeding, however, is a process by which large quantities of genetically diverse individuals are made.) Due to T. intermedium's grass-like structures, some believe that it still needs to be domesticated as much as possible to resemble wheat. [19]

The fact that T. intermedium is a perennial grass is important with regards to its use as a grain. The plant persists and can be harvested year after year, and its domestication would yield an additional three months of agriculture; its leaves are most active in the months in which common wheat is not active: July through September. Despite the promise, the yield per acre of Thinopyrum intermedium is 26% of the yield of traditional wheat. Because of this, some are putting effort into hybridizing wheat and T. intermedium instead of attempting to domesticate T. intermedium to a more acceptable yield. [20]

Hybridization with wheat

T. intermedium has been hybridized with wheat since the 1940s. [21] This confers some advantages. First, hybridization of T. intermedium with wheat transfers fungal- and viral-resistances to domestic wheat plants. [21] However, which specific genes protect against which specific fungi is not known. T. elongatum and T. intermedium impart a total of four leaf rust resistance genes, while T. intermedium confers two powdery mildew resistance genes. [22] There's evidence that T. intermedium also has resistance to wheat streak mosaic virus, the Aceria tosichella mite, Barley yellow dwarf, and others. [23] These conferred genes in wheat help increase yield and hardiness in times of environmental strain. Second, T. intermedium also has genes that improve bread making when hybridized with common wheat. While this may not seem like an important characteristic, better bread may mean more calories, feeding more people. In addition, bread that stays fresh longer may provide more opportunities for people to be adequately fed, and/or the bread can be transported to areas without much food access. [24]

Strategies for domestication

The Land Institute has been working to develop viable wheat and Thinopyrum intermedium hybrids since 2001, and there have been several successful strains that shared 14 T. intermedium chromosomes and 42 wheat chromosomes. These hybrids perform better regarding yield and resistance than either of their parents, but it cannot be widespread[ clarification needed ] due to the changes[ clarification needed ] of climate across the world. Also, perenniality is lost with these hybrids. This loss of perenniality is a common problem with hybridization attempts. All other desired characteristics are present in the hybrids - large seeds, good yields, etc. However, crosses between durum wheat and T. intermedium have resulted in hybrids that do exhibit perenniality in addition to other desired characteristics (increased vigor, hardiness in colder weather, good yield). [25]

There are three general strategies for domestication of T. intermedium with the purpose of creating an alternative grain crop:

  1. One strategy is to domesticate T. intermedium through mass breeding and selection to create a strain that mimics wheat's seed size and yield but retains T. intermedium's natural resistances, hardiness, and perenniality. In other words, this strategy gives T. intermedium more wheat-like characteristics;
  2. A second strategy is to hybridize wheat with T. intermedium to create a strain of wheat that mimics T. intermedium's resistance and perenniality but retains wheat's seed size and yield. In other words, this second strategy gives wheat more T. intermedium-like characteristics. Researchers hope that these two strategies will progress and meet in the middle. [19]
  3. A third strategy is to benefit from what we know about the molecular events that led to the domestication of evolutionarily related grasses such as wheat and barley. Mutations in so-called domestication genes in wild ancestors led to the domestication phenotypes that characterize these crops today. If related genes can be identified in T. intermedium it may be possible to mutate them by new breeding technologies (targeted mutagenesis, genome editing), and in this way accelerate domestication. [26]

Kernza

Diseases and pests

Black grassland bugs can be a problem for the cultivation of Thinopyrum intermedium, as they can cause severe damage on the wheatgrass plants. [27] Heavy infestation can reduce seed production and coupled with unfavourable conditions lead to plant mortality. By feeding on the plants, the bugs destroy cells and the destruct or remove chlorophyll, leaving whitish spots on the plant leaves.

Disease and pest management

Thinopyrum intermedium is a perennial plant, which means that usual methods of disease management used for annual grain production might not be applicable and efficient. Also, common herbicides used in annual grain cultivation are not approved for use with intermediate wheatgrass. Therefore, different approaches are necessary to disrupt diseases cycles of multiple pathogens in Kernza grain production. [28]

Resistance is an important factor when managing the perennial grain crop, as resistance is a defense which is active continuously and no application of active substances is needed throughout the year. T. intermedium has shown resistance against four major cereal pathogens. These are Barley yellow dwarf and wheat streak mosaic diseases, viral diseases which can cause complete yield loss without control and tan spot caused by the fungus Pyrenophora tritici-repentis and take-all caused by the fungus Gaeumannomyces graminis var. tritici. [29]

Cultivars of Kernza

Certified seed of the improved seed material are available at Crop Improvement Associations or from commercial sources. The cultivars differ in area of origin, selection traits and in regard to their purpose. [30]

Nutritional values and use of Kernza

Kernza contains higher values of protein, ash content and dietary fiber content when compared with wheat. Further 100 gram uncooked Kernza provides 1540 kilojoule (368 kcal) of food energy and is a good source of calcium (120 mg) as well as iron (5.5 mg). Comparing Kernza to white[ clarification needed ] wheat berries, calcium contents are 4.8 times higher and iron values are more than double. Kernza contains gluten but is deficient in high molecular weight glutenin, which limits its use especially in baking. The higher fat content in Kernza may increase overall rancidity, but a higher antioxidant content than wheat may offer a protective effect. [31] [32] There are existing products with Kernza such as Honey Toasted Kernza by Cascadian Farms [33] and Patagonia Provisions’ Kernza beer.

Management practices

There is little known about management practices regarding specifically Kernza. According to the official Kernza webpage [34] Kernza is already being intercropped with legumes and in an article of the StarTribune, it is said that in the Upper Midwest of the US, Kernza should be sown not later than the 1st of September to ensure root establishment before winter. However, there are still field trials being done to examine nitrogen, phosphorus and potassium fertilisation rates and application timing to maximize grain and forage yields. [35]

Cold stress acclimation

An important aspect of cold stress acclimation is increased expression of DNA repair genes. [36] In T. intermedium, conditions of freezing stress are associated with large increases in expression of two DNA repair genes (one gene product a photolyase and the other, a protein employed in nucleotide excision repair). [36]

Related Research Articles

<span class="mw-page-title-main">Cereal</span> Grass that has edible grain

A cereal is a grass cultivated for its edible grain. Cereals are the world's largest crops, and are therefore staple foods. They include rice, wheat, rye, oats, barley, millet, and maize. Edible grains from other plant families, such as buckwheat and quinoa are pseudocereals. Most cereals are annuals, producing one crop from each planting, though rice is sometimes grown as a perennial. Winter varieties are hardy enough to be planted in the autumn, becoming dormant in the winter, and harvested in spring or early summer; spring varieties are planted in spring and harvested in late summer. The term cereal is derived from the name of the Roman goddess of grain crops and fertility, Ceres.

<span class="mw-page-title-main">Wheat</span> Genus of grass cultivated for grain

Wheat is a grass widely cultivated for its seed, a cereal grain that is a worldwide staple food. The many species of wheat together make up the genus Triticum ; the most widely grown is common wheat. The archaeological record suggests that wheat was first cultivated in the regions of the Fertile Crescent around 9600 BC. Botanically, the wheat kernel is a caryopsis, a type of fruit.

<span class="mw-page-title-main">Einkorn wheat</span> Primitive wheat

Einkorn wheat can refer either to a wild species of wheat (Triticum) or to its domesticated form. The wild form is T. boeoticum, and the domesticated form is T. monococcum. Einkorn is a diploid species of hulled wheat, with tough glumes ('husks') that tightly enclose the grains. The cultivated form is similar to the wild, except that the ear stays intact when ripe and the seeds are larger. The domestic form is known as "petit épeautre" in French, "Einkorn" in German, "einkorn" or "littlespelt" in English, "piccolo farro" in Italian and "escanda menor" in Spanish. The name refers to the fact that each spikelet contains only one grain.

<span class="mw-page-title-main">Teff</span> Edible annual grass native to the Horn of Africa

Teff, also known as Eragrostis tef, Williams lovegrass, or annual bunch grass, is an annual grass, a species of lovegrass native to the Horn of Africa, notably to both Eritrea and Ethiopia. It is cultivated for its edible seeds, also known as teff. Teff was one of the earliest plants domesticated. It is one of the most important staple crops in Ethiopia and Eritrea.

<span class="mw-page-title-main">Emmer</span> Type of wheat

Emmer wheat or hulled wheat is a type of awned wheat. Emmer is a tetraploid. The domesticated types are Triticum turgidum subsp. dicoccum and T. t. conv. durum. The wild plant is called T. t. subsp. dicoccoides. The principal difference between the wild and the domestic forms is that the ripened seed head of the wild plant shatters and scatters the seed onto the ground, while in the domesticated emmer, the seed head remains intact, thus making it easier for humans to harvest the grain.

<span class="mw-page-title-main">Durum</span> Species of wheat used for food

Durum wheat, also called pasta wheat or macaroni wheat, is a tetraploid species of wheat. It is the second most cultivated species of wheat after common wheat, although it represents only 5% to 8% of global wheat production. It was developed by artificial selection of the domesticated emmer wheat strains formerly grown in Central Europe and the Near East around 7000 BC, which developed a naked, free-threshing form. Like emmer, durum wheat is awned. It is the predominant wheat that grows in the Middle East.

<span class="mw-page-title-main">The Land Institute</span> American nonprofit organization

The Land Institute is an American nonprofit research, education, and policy organization dedicated to sustainable agriculture, based in Salina, Kansas. Their goal is to develop an agricultural system based on perennial crops that "has the ecological stability of the prairie and a grain yield comparable to that from annual crops".

<span class="mw-page-title-main">Perennial</span> Plant that lives for more than two years

In botany, a perennial plant or simply perennial is a plant that lives more than two years. The term is often used to differentiate a plant from shorter-lived annuals and biennials. The term is also widely used to distinguish plants with little or no woody growth from trees and shrubs, which are also technically perennials. Notably, it is estimated that 94% of plant species fall under the category of perennials, underscoring the prevalence of plants with lifespans exceeding two years in the botanical world.

<span class="mw-page-title-main">Khorasan wheat</span> Species of grass

Khorasan wheat or Oriental wheat is a tetraploid wheat species. The grain is twice the size of modern-day wheat, and has a rich, nutty flavor.

<span class="mw-page-title-main">Common wheat</span> Species of plant

Common wheat, also known as bread wheat, is a cultivated wheat species. About 95% of wheat produced worldwide is common wheat; it is the most widely grown of all crops and the cereal with the highest monetary yield.

<span class="mw-page-title-main">Triticeae</span> Tribe of grasses

Triticeae is a botanical tribe within the subfamily Pooideae of grasses that includes genera with many domesticated species. Major crop genera found in this tribe include wheat, barley, and rye; crops in other genera include some for human consumption, and others used for animal feed or rangeland protection. Among the world's cultivated species, this tribe has some of the most complex genetic histories. An example is bread wheat, which contains the genomes of three species with only one being a wheat Triticum species. Seed storage proteins in the Triticeae are implicated in various food allergies and intolerances.

<i>Agropyron cristatum</i> Species of grass

Agropyron cristatum, the crested wheat grass, crested wheatgrass, fairway crested wheat grass, is a species in the family Poaceae. This plant is often used as forage and erosion control. It is well known as a widespread introduced species on the prairies of the United States and Canada.

<i>Tilletia caries</i> Species of fungus

Tilletia caries is a basidiomycete that causes common bunt of wheat. The common names of this disease are stinking bunt of wheat and stinking smut of wheat. This pathogen infects wheat, rye, and various other grasses. T. caries is economically and agriculturally important because it reduces both the wheat yield and grain quality.

<span class="mw-page-title-main">Intensive crop farming</span> Modern form of farming

Intensive crop farming is a modern industrialized form of crop farming. Intensive crop farming's methods include innovation in agricultural machinery, farming methods, genetic engineering technology, techniques for achieving economies of scale in production, the creation of new markets for consumption, patent protection of genetic information, and global trade. These methods are widespread in developed nations.

<span class="mw-page-title-main">Perennial rice</span> Varieties of rice that can grow season after season without re-seeding

Perennial rice are varieties of long-lived rice that are capable of regrowing season after season without reseeding; they are being developed by plant geneticists at several institutions. Although these varieties are genetically distinct and will be adapted for different climates and cropping systems, their lifespan is so different from other kinds of rice that they are collectively called perennial rice. Perennial rice—like many other perennial plants—can spread by horizontal stems below or just above the surface of the soil but they also reproduce sexually by producing flowers, pollen and seeds. As with any other grain crop, it is the seeds that are harvested and eaten by humans.

<span class="mw-page-title-main">Grain</span> Edible dry seed

A grain is a small, hard, dry fruit (caryopsis) – with or without an attached hull layer – harvested for human or animal consumption. A grain crop is a grain-producing plant. The two main types of commercial grain crops are cereals and legumes.

<span class="mw-page-title-main">Perennial grain</span> Grain crops that remain productive for two or more years without replanting

A perennial grain is a grain crop that lives and remains productive for two or more years, rather than growing for only one season before harvest, like most grains and annual crops. While many fruit, nut and forage crops are long-lived perennial plants, all major grain crops presently used in large-scale agriculture are annuals or short-lived perennials grown as annuals. Scientists from several nations have argued that perennial versions of today's grain crops could be developed and that these perennial grains could make grain agriculture more sustainable.

Perennial crops are a perennial plant species that are cultivated and live longer than two years without the need of being replanted each year. Naturally perennial crops include many fruit and nut crops; some herbs and vegetables also qualify as perennial. Perennial crops have been cultivated for thousands of years; their cultivation differs from the mainstream annual agriculture because regular tilling is not required and this results in decreased soil erosion and increased soil health. Some perennial plants that are not cultivated as perennial crops are tomatoes, whose vines can live for several years but often freeze and die in winters outside of temperate climates, and potatoes which can live for more than two years but are usually harvested yearly. Despite making up 94% of plants on earth, perennials take up only 13% of global cropland. In contrast, grain crops take up about 70% of global cropland and global caloric consumption and are largely annual plants.

<i>Thinopyrum obtusiflorum</i> Species of grass

Thinopyrum obtusiflorum is a species of grass known by the common names tall wheatgrass, rush wheatgrass, and Eurasian quackgrass. It is native to Eurasia and it has been introduced to many other parts of the world, including much of the Americas and Australia.

<i>Leymus mollis</i> Species of grass

Leymus mollis is a species of grass known by the common names American dune grass, American dune wild-rye, sea lyme-grass, strand-wheat, and strand grass. Its Japanese name is hamaninniku. It is native to Asia, where it occurs in Japan, China, Korea, and Russia, and northern parts of North America, where it occurs across Canada and the northern United States, as well as Greenland. It can also be found in Iceland.

References

  1. USDA, NRCS (n.d.). "Thinopyrum intermedium". The PLANTS Database (plants.usda.gov). Greensboro, North Carolina: National Plant Data Team. Retrieved 9 December 2015.
  2. The Grass Manual: Thinopyrum intermedium (intermediate wheatgrass) accessed 2013-01-31
  3. "AGM Plants March 2020 © RHS – ORNAMENTAL" (PDF). rhs.org.uk. The Royal Horticultural Society. March 2020. Retrieved 11 September 2020.
  4. Intermediate Wheatgrass. Green Lands Blue Waters. Retrieved: 2013-10-26.
  5. 1 2 Trademark information. Kernza Archived 2014-12-31 at the Wayback Machine . LegalForce. Retrieved: 2013-10-26.
  6. 1 2 3 USDA PLANTS Database
  7. Wild Triga
  8. Intermediate wheatgrass fact sheet [ permanent dead link ]
  9. The Grass Manual: Distribution map for Thinopyrum intermedium (in North America; introduced species) . accessed 1/31.2013
  10. 1 2 Intermediate Wheatgrass Plant Guide [ permanent dead link ]
  11. Wagoner, P., and A. Schauer. 1990. Intermediate wheatgrass has as a perennial grain crop. p. 143-145. In: J. Janick and J.E. Simon (eds.), Advances in new crops. Timber Press, Portland, OR.
  12. How We Can Tame Overlooked Wild Plants to Feed the World | WIRED
  13. Seed Production of Intermediate Wheatgrass [ permanent dead link ]
  14. Becker, Robert (1991). "Compositional, nutritional and functional evaluation of intermediate wheatgrass". Journal of Food Processing and Preservation. 15 (1): 63–77. doi: 10.1111/j.1745-4549.1991.tb00154.x .
  15. Cox et al. 2002 Breeding Perennial Grain Crops. Critical Reviews in Plant Science 21:51-91
  16. Salina, Elena (July 2015). "A Thinopyrum intermedium chromosome in bread wheat cultivars as a source of genes conferring resistance to fungal diseases". Euphytica. 204: 91–101. doi:10.1007/s10681-014-1344-5. S2CID   12410612.
  17. A. Schauer, 1990. Evaluation of Intermediate Wheatgrass Germplasm. Rodale Research Center, Kutztown, Pennsylvania.
  18. "Cox 2008". Archived from the original on 2009-05-05. Retrieved 2009-02-23.
  19. 1 2 Dehaan, Lee (2014). "Current efforts to develop perennial wheat and domesticate Thinopyrum Intermedium as a perennial grain". Genetics and Breeding: State of the Art, Gaps and Opportunities. 01: 72–89.
  20. Cox, Thomas (August 2006). "Prospects for Developing Perennial Grain Crops". BioScience. 56 (8): 649–659. doi: 10.1641/0006-3568(2006)56[649:PFDPGC]2.0.CO;2 .
  21. 1 2 Li, Hongjie; Wang, Xiaoming (2009). "Thinopyrum ponticum and Th. intermedium: the promising source of resistance to fungal and viral diseases of wheat". Journal of Genetics and Genomics . 36 (9). Beijing: Elsevier China: 557–565. doi:10.1016/S1673-8527(08)60147-2. ISSN   1673-8527. PMID   19782957.
  22. Salina, Elena (January 25, 2015). "A Thinopyrum intermedium chromosome in bread wheat cultivars as a source of genes conferring resistance to fungal diseases". Euphytica. 204 (1): 91–101. doi:10.1007/s10681-014-1344-5. S2CID   12410612.
  23. Cox, Thomas (2006). "Prospects for Developing Perennial Grain Crops". BioScience. 56 (8): 649–659. doi: 10.1641/0006-3568(2006)56[649:PFDPGC]2.0.CO;2 .
  24. Garg, Monika (2014). "Introgression of useful genes from Thinopyrum intermedium to wheat for improvement of bread-making quality". Plant Breeding. 133 (3): 327–334. doi:10.1111/pbr.12167.
  25. Dehaan, Lee (2014). "Current efforts to develop perennial wheat and domesticate Thinopyrum Intermedium as a perennial grain". Genetics and Breeding: State of the Art, Gaps and Opportunities. 01: 72–89.
  26. DeHaan L, Larson S, López-Marqués RL, Wenkel S, Gao C, Palmgren M (2020). "Accelerated Domestication of an Emerging Perennial Grain Crop". Trends in Plant Science. 25 (6): 525–537. doi: 10.1016/j.tplants.2020.02.004 . PMID   32407693.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  27. Malechek, J. C.; Gray, A. M.; Haws, B. A. (1977-03-01). "Yield and Nutritional Quality of Intermediate Wheatgrass Infested by Black Grass Bugs at Low Population Densities". Journal of Range Management. 30 (2): 128–131. doi:10.2307/3897754. hdl: 10150/646831 . ISSN   0022-409X. JSTOR   3897754.
  28. Approaches to Managing Intermediate Wheatgrass for Dual-Use Forage and Kernza Perennial Grain Production. 2019. Developed by y Green Lands Blue Waters, the University of Minnesota Department of Agronomy and Plant Genetics, the University of Wisconsin–Madison Agronomy Department, the Forever Green Initiative, The Land Institute, and farmer partners.
  29. Cox, C. M.; Garrett, K. A.; Cox, T. S.; Bockus, W. W.; Peters, T. (2005-11-01). "Reactions of Perennial Grain Accessions to Four Major Cereal Pathogens of the Great Plains". Plant Disease. 89 (11): 1235–1240. doi:10.1094/PD-89-1235. hdl: 2097/13885 . ISSN   0191-2917. PMID   30786449.
  30. Govaerts, Rafaël (2017). "World Checklist of Selected Plant Families | COL". www.catalogueoflife.org. doi:10.48580/d4sl-38c. Archived from the original on 2022-04-09. Retrieved 2021-11-24.
  31. "Kernza" (PDF).
  32. "Baking with Kernza". 17 August 2021.
  33. "A climate smart cereal with CFANS roots | College of Food, Agricultural and Natural Resource Sciences". University of Minnesota College of Food, Agricultural and Natural Resource Sciences. Retrieved 2022-07-23.
  34. "Kernza".
  35. Kernza crop failure sends General Mills unit to remake plans for new cereal – StarTribu ne.com Kernza CAP - Kernza
  36. 1 2 Jaikumar NS, Dorn KM, Baas D, Wilke B, Kapp C, Snapp SS. Nucleic acid damage and DNA repair are affected by freezing stress in annual wheat (Triticum aestivum) and by plant age and freezing in its perennial relative (Thinopyrum intermedium). Am J Bot. 2020 Dec;107(12):1693-1709. doi: 10.1002/ajb2.1584. Epub 2020 Dec 19. PMID 33340368