A torsion bar suspension, also known as a torsion spring suspension, is any vehicle suspension that uses a torsion bar as its main weight-bearing spring. One end of a long metal bar is attached firmly to the vehicle chassis; the opposite end terminates in a lever, the torsion key, mounted perpendicular to the bar, that is attached to a suspension arm, a spindle, or the axle. Vertical motion of the wheel causes the bar to twist around its axis and is resisted by the bar's torsion resistance. The effective spring rate of the bar is determined by its length, cross section, shape, material, and manufacturing process.
Torsion bar suspensions are used on combat vehicles and tanks like the T-72, Leopard 1, Leopard 2, M26 Pershing, M18 Hellcat, M48 Patton, M60 Patton and the M1 Abrams (many tanks from World War II used this suspension), and on modern trucks and SUVs from Ford, Chrysler, GM, Mitsubishi, Mazda, Nissan, Isuzu, LuAZ, and Toyota. Class 8 truck manufacturer Kenworth also offered a torsion bar suspension for its K100C and W900A models, up to about 1981.
Manufacturers change the torsion bar or key to adjust the ride height, usually to compensate for engine weight.
The main advantages of a torsion bar suspension are soft ride due to elasticity of the bar, durability, easy adjustability of ride height, and small profile along the width of the vehicle. It takes up less of the vehicle's interior volume than coil springs.
Torsion bars reached the height of their popularity on mass-production road cars in the middle of the 20th century at the same time that unitary construction was being adopted. At a time when the mechanics of stress and metal fatigue in unitary body frames was poorly understood, torsion bars were very attractive to vehicle designers as the bars could be mounted to reinforced parts of the central structure, typically the bulkhead. Using MacPherson struts to achieve independent front suspension with coil springs meant providing strong turrets in the frontal structure of the car.
A disadvantage is that torsion bars, unlike coil springs, usually cannot provide a progressive spring rate. In most torsion bar systems, ride height (and therefore many handling features) may be changed by simply adjusting bolts that connect the torsion bars to the frame cross member. In most cars with this type of suspension, swapping torsion bars for a different spring rate is usually an easy task. Longitudinal torsion bars extend under the passenger compartment, cutting into interior space by raising the floor, while in transverse systems, torsion bar length is limited by vehicle width.
Some vehicles use torsion bars to provide automatic leveling, using a motor to pre-stress the bars to provide greater resistance to load and, in some cases (depending on the speed with which the motors can act), to respond to changes in road conditions. Height adjustable suspension has been used to implement a wheel-change mode where the vehicle is raised on three wheels so that the remaining wheel is lifted off the ground without the aid of a jack. This example is of a vehicle that uses oleopneumatic suspension where a high pressure pump primes a pressure reservoir that feeds terminating spheres with hydraulic oil (LHM) to achieve suspension. The ride height is maintained by cross-linking front and rear suspension spheres using hydraulic connecting pipes. (The two previous sentences refer to two different oleo-pneumatic suspension systems and are best ignored in the context of torsion bars. The principle of wheel change by suspension height adjustments has already been explained earlier in the paragraph).
The first vehicle to use torsion bars was Leyland Eight designed by J. G. Parry-Thomas and produced from 1920 to 1923, however its rear suspension, patented in 1919, [1] was retrospectively named "torsion bar assisted" by Leyland in a 1966 publication [2] because the bars only complemented the leaf springs. Less than two dozen cars (including racing variants) were produced, and the suspension was only ever used again on Marlborough-Thomas racing cars few years later.
In 1923 Parry-Thomas patented an updated design featuring a true torsion bar design with no leaf springs, [3] however the inventor's death in a car crash in 1927 prevented its further development. Therefore the invention is often credited to the Porsche GmbH, which patented it in 1931 and later used in a lot of designs. [4] [5]
The front wheel drive Citroën Traction Avant from 1934 was the first to implement the idea in a serially produced car, featuring independent front torsion bar suspension and a flexible trailing dead axle, also sprung by torsion bars. The flexibility of the axle beam provided wheel location features like a twist beam axle. [6] Also in the 1930s, Porsche's prototypes of the first Volkswagen Beetle incorporated torsion bars—especially their transverse mounting style. Czechoslovakian Tatra's 1948 T600 Tatraplan employed rear torsion bar suspension, the only Tatra to do so. [7]
The system first saw military use in the Swedish Stridsvagn L-60 tank of 1934. Its suspension was developed by German engineers, including Porsche employee Karl Rabe who also held patents on torsion bar suspensions personally. [8] [9] [10]
It was used extensively in European cars like Renault, Citroën and Porsche/Volkswagen, by less known producers like Mathis and Röhr in the 1930s, as well as by American Packard in the 1950s. The Packard used torsion bars at both front and rear, and interconnected the front and rear systems to improve ride quality. Morris Minor and Oxford from the late 1940s onwards used a front torsion bar system very similar to the Citroën, as did the Riley RM models. The revolutionary Jaguar E-Type introduced in 1961 had a torsion bar front suspension very similar to the Citroën and Morris Minor, and an independent coil spring rear suspension using four shock absorbers with concentric springs (coilover).
An early application of a torsion bar in an American car was by Hudson Motor Car Company of Detroit who had introduced the innovative front axle flex suspension in 1934 Hudson and Terraplane cars and realized for 1935 that a transverse torsion bar linked to the rear axle was needed as an anti-roll bar to stabilize the cars. The single torsion bar was mounted through the frame sides behind the rear axle and then attached by arms and links to the front side of the spring U-bolt plates. Axle flex was discontinued for the 1936 model year.
Gladeon M. Barnes and Warren E. Preston filed a US patent application for a torsion bar suspension in 1934, which was approved two years later. [11] The original feature of the patent was what is now called tube-over-bar (TOB) design which only saw limited use in the 1960s (for example, on LVTP-7). Even though Barnes was employed by the US Army Ordnance Department, torsion bars were not used in American armor designs until the T70 GMC in 1943, which suspension was derived from Pz. III by GM engineer Robert Schilling. [12]
Post-war the use of torsion bar front suspension was a defining feature of British Morris cars, starting with the Morris Minor of 1948, its larger Morris Oxford MO counterpart and the upmarket Morris Six MS, plus the Wolseley-badged upmarket variants of the latter two models. The designer of these cars, Alec Issigonis, was inspired by the Traction Avant's suspension, although the Morris cars were rear-wheel drive and used conventional leaf springs for their rear axles. The Minor used lever arm dampers with its torsion bars while the Oxford and the Six used innovative telescopic dampers. The Minor remained in production largely unchanged until 1972 and was replaced by the Morris Marina which also used the torsion bar-lever arm damper system for its front suspension—one of the last new cars worldwide to be introduced with the system and which remained in production until 1984. The Oxford/Six platform was developed through several revised series which used Issigonis' torsion bar system until 1959 when the new Farina Oxford was introduced using front suspension with coil springs, lower wishbones and lever arm dampers.
The most famous American passenger car application of the torsion bar, was the Chrysler system used beginning with all Chrysler products starting with the 1957 model year in cars such as the Imperial Crown series, Chrysler Windsor, DeSoto Firedome, Dodge Coronet and Plymouth Belevedere although Chrysler's "Torsion-Air" suspension was only for the front axle; the same basic system (longitudinal mounting) was maintained until the 1981 introduction of the K-car. A reengineered torsion bar suspension, introduced with the 1976 Dodge Aspen, introduced transverse-mounted torsion bars (possibly based on the Volkswagen Type 3 passenger car) until production ended in 1989 (with Chrysler's M platform). Some generations of the Dodge Dakota and Durango used torsion bars on the front suspension.
General Motors first used torsion bars on their light-duty pickup trucks in 1960 until it was phased out in 1963 where traditional coil springs are used up front for their 2WD trucks. Its first use in a passenger car was in 1966, starting with the E-platform vehicles (Oldsmobile Toronado, Cadillac Eldorado), 4WD S-10 pickups and Astro vans with optional AWD, and since 1988, full size trucks and SUVs with 4WD (GMT400, GMT800, and GMT900 series).
Porsche used four-wheel torsion bar suspension for their 356 and 911 series from 1948 until 1989 with the introduction of the 964. They are also used in the front suspension of the 914 as well as the rear suspension of the 924, 944, and 968. Honda also used front torsion bars on the third generation Civic and other variants built on the same platform including the Ballade and first generation CRX.
The German World War II Panther tank had double torsion bars.[ citation needed ] Needing bars longer than the width of the tank to get the required spring rate and maximum elastic bend angle from available steel alloys, designer Ernst Lehr created a suspension that effectively folded the bars in half. For each wheel, one rod was attached to the suspension arm, while another was mounted to a nearby point on the frame. On the opposite side of the tank, the two rods were attached to each other and fitted into a pivot.[ citation needed ] Deflection of the suspension arm caused both halves of the double torsion bar to twist. A disadvantage of the torsion bar suspension used in Tiger and Panther tanks (and many other WWII-era tanks and other AFVs) was the inability to incorporate an escape hatch through the bottom of the hull, a common feature of WWII-era tanks, as the torsion bar arrangement would have blocked crew access to such a hatch; however, the absence of leaf, coil or volute springs often left a large expanse of the side of the hull clear to include a side-escape hatch, and it was rare for a tank to be flipped over in such a way that all top-side hatches were unable to open, which is the purpose of ventral hatches.
Many contemporary main battle tanks use torsion bar suspension, including the American M1 Abrams, [13] German Leopard 2, [14] and Chinese MBT-3000,[ citation needed ] though the newest generation of tanks such as the Russian T-14 Armata utilize an adjustable hydraulic suspension.[ citation needed ] Due to their small size, tremendous load capacity, and relative ease of service, torsion bar suspension has been ideal for tanks, though it is not without disadvantage. The large travel and high elasticity of the torsion bars results in a "rocking" motion when the tank is moving or coming to a sudden stop. A gun stabilizer must be used to compensate for the rocking motion. Due to the massive weight of a main battle tank, compared to an automobile, there is a much greater risk of breaking a torsion bar on sudden bumps or maneuvers, and if it is not replaced in short order the reduced suspension can affect the maneuverability of the vehicle, and in extreme cases risk immobilizing the vehicle as the reduced capacity of the suspension causes additional torsion bars to break.
Torsion bars were sometimes used instead of conventional coil valve springs in some older motorcycles, such as the Honda CB450, and also on the Panhard Dyna X and Panhard Dyna Z cars of the 1950s. They were also used in the door mechanism of the DMC DeLorean automobile and trunk lids of some Toyota Corolla (E30) models.
A shock absorber or damper is a mechanical or hydraulic device designed to absorb and damp shock impulses. It does this by converting the kinetic energy of the shock into another form of energy which is then dissipated. Most shock absorbers are a form of dashpot.
The MacPherson strut is a type of automotive suspension system that uses the top of a telescopic damper as the upper steering pivot. It is widely used in the front suspension of modern vehicles. The name comes from American automotive engineer Earle S. MacPherson, who invented and developed the design.
Suspension is the system of tires, tire air, springs, shock absorbers and linkages that connects a vehicle to its wheels and allows relative motion between the two. Suspension systems must support both road holding/handling and ride quality, which are at odds with each other. The tuning of suspensions involves finding the right compromise. It is important for the suspension to keep the road wheel in contact with the road surface as much as possible, because all the road or ground forces acting on the vehicle do so through the contact patches of the tires. The suspension also protects the vehicle itself and any cargo or luggage from damage and wear. The design of front and rear suspension of a car may be different.
Hydropneumatic suspension is a type of motor vehicle suspension system, designed by Paul Magès, invented by Citroën, and fitted to Citroën cars, as well as being used under licence by other car manufacturers. Similar systems are also widely used on modern tanks and other large military vehicles. The suspension was referred to as Suspension oléopneumatique in early literature, pointing to oil and air as its main components.
Independent suspension is any automobile suspension system that allows each wheel on the same axle to move vertically independently of the others. This is contrasted with a beam axle or deDion axle system in which the wheels are linked. "Independent" refers to the motion or path of movement of the wheels or suspension. It is common for the left and right sides of the suspension to be connected with anti-roll bars or other such mechanisms. The anti-roll bar ties the left and right suspension spring rates together but does not tie their motion together.
Automobile handling and vehicle handling are descriptions of the way a wheeled vehicle responds and reacts to the inputs of a driver, as well as how it moves along a track or road. It is commonly judged by how a vehicle performs particularly during cornering, acceleration, and braking as well as on the vehicle's directional stability when moving in steady state condition.
A double wishbone suspension is an independent suspension design for automobiles using two wishbone-shaped arms to locate the wheel. Each wishbone or arm has two mounting points to the chassis and one joint at the knuckle. The shock absorber and coil spring mount to the wishbones to control vertical movement. Double wishbone designs allow the engineer to carefully control the motion of the wheel throughout suspension travel, controlling such parameters as camber angle, caster angle, toe pattern, roll center height, scrub radius, scuff, and more.
The Chapman strut is a design of independent rear suspension used for light cars, particularly sports and racing cars. It takes its name from, and is best known for its use by, Colin Chapman of Lotus.
A swing axle is a simple type of independent suspension, almost always for the rear axles, designed and patented by Edmund Rumpler in 1903. This was a revolutionary invention in automotive suspension, allowing driven (powered) wheels to follow uneven road surfaces independently, thus enabling the vehicle's wheels to maintain better road contact and holding; plus each wheel's reduced unsprung weight means their movements have less impact on the vehicle as a whole. The first automotive application was the Rumpler Tropfenwagen, later followed by the Mercedes 130H/150H/170H, the Standard Superior, the Volkswagen Beetle and its derivatives, the Chevrolet Corvair, and the roll-over prone M151 jeep amongst others.
An anti-roll bar is an automobile suspension part that helps reduce the body roll of a vehicle during fast cornering or over road irregularities. It links opposite front or rear wheels to a torsion spring using short lever arms for anchors. This increases the suspension's roll stiffness—its resistance to roll in turns.
Air suspension is a type of vehicle suspension powered by an electric or engine-driven air pump or compressor. This compressor pumps the air into a flexible bellows, usually made from textile-reinforced rubber. Unlike hydropneumatic suspension, which offers many similar features, air suspension does not use pressurized liquid, but pressurized air. The air pressure inflates the bellows, and raises the chassis from the axle.
Self-levelling refers to an automobile suspension system that maintains a constant ride height of the vehicle above the road, regardless of load.
A Corvette leaf spring is a type of independent suspension that utilizes a fiber-reinforced plastic (FRP) mono-leaf spring instead of more conventional coil springs. It is named after the Chevrolet Corvette, the American sports car for which it was originally developed and first utilized. A notable characteristic of this suspension configuration is the mounting of the mono-leaf spring such that it can serve as both ride spring and anti-roll spring. In contrast to many applications of leaf springs in automotive suspension designs, this type does not use the spring as a locating link. While this suspension type is most notably associated with several generations of the Chevrolet Corvette the design has been used in other production General Motors cars, as well as vehicles from Volvo Cars and Mercedes-Benz Sprinter van. Fiat produced cars with a similar configuration, using a multi-leaf steel spring in place of the FRP mono-leaf spring.
The Tatra 77 (T77) is one of the first serial-produced, truly aerodynamically-designed automobiles, produced by Czechoslovakian company Tatra from 1934 to 1938. It was developed by Hans Ledwinka and Paul Jaray, the Zeppelin aerodynamic engineer. Launched in 1934, the Tatra 77 is a coach-built automobile, constructed on a platform chassis with a pressed box-section steel backbone rather than Tatra's trademark tubular chassis, and is powered by a 60 horsepower (45 kW) rear-mounted 2.97-litre air-cooled V8 engine, in later series increased to a 75 horsepower (56 kW) 3.4-litre engine. It possessed advanced engineering features, such as overhead valves, hemispherical combustion chambers, a dry sump, fully independent suspension, rear swing axles and extensive use of lightweight magnesium alloy for the engine, transmission, suspension and body. The average drag coefficient of a 1:5 model of Tatra 77 was recorded as 0.2455. The later model T77a, introduced in 1935, has a top speed of over 150 km/h (93 mph) due to its advanced aerodynamic design which delivers an exceptionally low drag coefficient of 0.212, although some sources claim that this is the coefficient of a 1:5 scale model, not of the car itself. Recent article confirmed the Tatra 77/77a drag coefficient for real full-size car as 0.36.
An active suspension is a type of automotive suspension that uses an onboard control system to control the vertical movement of the vehicle's wheels and axles relative to the chassis or vehicle frame, rather than the conventional passive suspension that relies solely on large springs to maintain static support and dampen the vertical wheel movements caused by the road surface. Active suspensions are divided into two classes: true active suspensions, and adaptive or semi-active suspensions. While semi-adaptive suspensions only vary shock absorber firmness to match changing road or dynamic conditions, active suspensions use some type of actuator to raise and lower the chassis independently at each wheel.
The twist-beam rear suspension is a type of automobile suspension based on a large H- or C-shaped member. The front of the H attaches to the body via rubber bushings, and the rear of the H carries each stub-axle assembly, on each side of the car. The cross beam of the H holds the two trailing arms together, and provides the roll stiffness of the suspension, by twisting as the two trailing arms move vertically, relative to each other.
The vertical volute spring suspension system is a type of vehicle suspension system which uses volute springs to compensate for surface irregularities. This type of the suspension system was mainly fitted on US and Italian tanks and armored fighting vehicles starting from throughout the 1930s up until after the end of the Second World War in 1945.
Dubonnet suspension was a system of leading or trailing arm independent front suspension and steering popular mainly in the 1930s and 1940s. Not very durable unless exactingly maintained, it was soon replaced by other designs.
The Audi R8 LMS Cup was a one-make sports car racing series by Audi based in Asia. Audi R8 LMS Cup cars were based on the Audi R8 LMS (GT3).
A platform chassis is a form of vehicle frame / automobile chassis, constructed as a flat plate or platform, sometimes integrating a backbone or frame-structure with a vehicle's floor-pan.