Velvet belly lanternshark

Last updated

Velvet belly lanternshark
Etmopterus spinax Sardinia.jpg
Dwarf Lanternshark.jpg
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Chordata
Class: Chondrichthyes
Subclass: Elasmobranchii
Subdivision: Selachimorpha
Order: Squaliformes
Family: Etmopteridae
Genus: Etmopterus
Species:
E. spinax
Binomial name
Etmopterus spinax
Etmopterus spinax distmap.png
Range of the velvet belly lantern shark
Synonyms
  • Etmopterus aculeatusRafinesque, 1810
  • Spinax gunneriReinhardt, 1825
  • Spinax linneiMalm, 1877
  • Spinax niger* Cloquet, 1816
  • Spinax vitulinus* de la Pylaie, 1835
  • Squalus infernusBlainville, 1825
  • Squalus nigerGunnerus, 1763
  • Squalus spinaxLinnaeus, 1758

* ambiguous synonym

The velvet belly lanternshark (or simply velvet belly) (Etmopterus spinax) is a species of dogfish shark in the family Etmopteridae. One of the most common deepwater sharks in the northeastern Atlantic Ocean, the velvet belly is found from Iceland and Norway to Gabon and South Africa at a depth of 20–2,490 m (66–8,169 ft). [2] [3] A small shark generally no more than 45 cm (18 in) long, the velvet belly is so named because its black underside is abruptly distinct from the brown coloration on the rest of its body. The body of this species is fairly stout, with a moderately long snout and tail, and very small gill slits. Like other lanternsharks, the velvet belly is bioluminescent, with light-emitting photophores forming a species-specific pattern over its flanks and abdomen. The ventral photophores are thought to function in counter-illumination, which camouflages the shark against predators and prey. [4] [5] The bioluminescent flank markings may play a role in intraspecific communication. [6]

Contents

Young velvet bellies feed mainly on krill and small bony fish, transitioning to squid and shrimp as they grow larger. There is evidence that individuals also move into deeper water as they age. This species exhibits a number of adaptations to living in the deep sea, such as specialized T-cells and liver proteins for dealing with the higher concentrations of heavy metals found there. Velvet bellies often carry a heavy parasite load. It is ovoviviparous, giving birth to litters of six to 20 young every two to three years. This species has virtually no commercial value, but large numbers are caught as bycatch in deepwater commercial fisheries. It has been assessed as Near Threatened by the International Union for Conservation of Nature, the heavy fishing pressure throughout its range and its slow reproductive rate are raising conservation concerns.

Taxonomy

Profile view of a velvet belly lanternshark, from Les Poissons (1877). Etmopterus spinax Gervais.jpg
Profile view of a velvet belly lanternshark, from Les Poissons (1877).

The velvet belly was originally described as Squalus spinax by Swedish natural historian Carl Linnaeus, known as the "father of taxonomy", in the 1758 tenth edition of Systema Naturae . He did not designate a type specimen; the specific epithet spinax is in reference to the spiny dorsal fins. This species was later moved to the genus Etmopterus via the synonymy of Constantine Samuel Rafinesque's Etmopterus aculeatus with Squalus spinax. [7]

The velvet belly is grouped with the Caribbean lanternshark (E. hillianus), fringefin lanternshark (E. schultzi), brown lanternshark (E. unicolor), broadbanded lanternshark (E. gracilispinis), combtooth lanternshark (E. decacuspidatus), and dwarf lanternshark (E. perryi) in having irregularly arranged, needle-shaped dermal denticles. [8] Its common name comes from this shark's black ventral surface, which is sharply delineated from the rest of its body like a patch of velvet. [9]

Distribution and habitat

The range of the velvet belly is in the eastern Atlantic, extending from Iceland and Norway to Gabon, including the Mediterranean Sea, the Azores, the Canary Islands, and Cape Verde. It has also been reported off Cape Province, South Africa. This shark mainly inhabits the outer continental and insular shelves and upper slopes over mud or clay, from close to the bottom to the middle of the water column. [7] [10] It is most common at a depth of 200–500 m (660–1,640 ft), though in the Rockall Trough, it is only found at a depth of 500–750 m (1,640–2,460 ft). [11] [12] This species has been reported from as shallow as 20 m (66 ft), [2] and as deep as 2,490 m (8,170 ft). [3]

Description

The black underside of the velvet belly lanternshark gives it its common name. Etmopterus spinax 005.jpg
The black underside of the velvet belly lanternshark gives it its common name.

The velvet belly is a robustly built shark with a moderately long, broad, flattened snout. The mouth has thin, smooth lips. The upper teeth are small, with a narrow central cusp and usually fewer than three pairs of lateral cusplets. The lower teeth are much larger, with a strongly slanted, blade-like cusp at the top and interlocking bases. The five pairs of gill slits are tiny, comparable in size to the spiracles. Both dorsal fins bear stout, grooved spines at the front, with the second much longer than the first and curved. The first dorsal fin originates behind the short and rounded pectoral fins; the second dorsal fin is twice the size of the first and originates behind the pelvic fins. The anal fin is absent. The tail is slender, leading to a long caudal fin with a small lower lobe and a low upper lobe with a prominent ventral notch near the tip. [7]

The dermal denticles are thin with hooked tips, arranged without a regular pattern well-separated from one another. The coloration is brown above, abruptly transitioning to black below. There are thin black marks above and behind the pelvic fins, and along the caudal fin. [7] The velvet belly possesses numerous photophores that emit a blue-green light visible from 3–4 m (9.8–13.1 ft) away. [9] Varying densities of photophores are arranged in nine patches on the shark's sides and belly, creating a pattern unique to this species: photophores are present along the lateral line, scattered beneath the head but excluding the mouth, evenly on the belly, and concentrated around the pectoral fins and beneath the caudal peduncle. [11] [13] The maximum reported length is 60 cm (24 in), although few are longer than 45 cm (18 in). [11] Females are larger than males. [14]

Biology and ecology

Velvet belly lanternshark preserved in formalin. Etmopterus spinax formalin.jpg
Velvet belly lanternshark preserved in formalin.

Along with the blackmouth catshark (Galeus melastomus) and the Portuguese dogfish (Centroscymnus coelolepis), the velvet belly is one of the most abundant deep-sea sharks in the northeastern Atlantic. [15] It is found individually or in small shoals. [16] Samplings in the Mediterranean have found females outnumbering males across all ages; this imbalance increases in the older age classes. [17] In the Rockall Trough and the Catalan Sea, large adults are found in deeper waters than juveniles, which may serve to reduce competition between the two groups. [15] However, this pattern has not been observed at other sites in the eastern Mediterranean. [3]

The velvet belly's liver accounts for 17% of its body mass, three-quarters of which is oil, making it nearly neutrally buoyant. [18] To deal with the higher concentrations of heavy metals in the deep sea, the velvet belly has T-cells in its bloodstream that can identify and mark toxic compounds for elimination. These T-cells are produced by a lymphomyeloid gland in its esophagus called a "Leydig's organ", which is also found in some other sharks and rays. In its liver, specialized proteins are also capable of detoxifying cadmium, copper, mercury, zinc, and other toxic contaminants. [11] The velvet belly's bioluminescence is thought to function in counter-illumination, which eliminates the shark's silhouette and camouflages it from upward-looking predators. [13] Its bioluminescence may also serve a social function, such as finding mates or co-ordinating groups, as the pattern is species-specific. The velvet belly is an important food of larger fishes such as other sharks; a major predator of this species is the longnosed skate (Dipturus oxyrinchus). [11] [16]

Velvet bellies are often heavily parasitized; this shark has an Anelasma squalicola barnacle attached near the fin spine. Etmopterus spinax 010.jpg
Velvet bellies are often heavily parasitized; this shark has an Anelasma squalicola barnacle attached near the fin spine.

Numerous parasites are known for this species, and both juveniles and adults often carry heavy parasite loads. Known internal parasites include the monogenean Squalonchocotyle spinacis, the tapeworms Aporhynchus norvegicus, Lacistorhynchus tenuis, and Phyllobothrium squali, and the nematodes Anisakis simplex and Hysterothylacium aduncum. Some of these parasites use the velvet belly's prey as intermediate hosts and are acquired via ingestion, while others use the shark itself as an intermediate host. [16] The barnacle Anelasma squalicola , an external parasite, attaches to the shark's dorsal spine socket and penetrates deeply into the muscle, in the process often providing an attachment site for a second (and rarely a third) barnacle. Infestation by this barnacle reduces its host's fecundity by impairing the development of the reproductive organs. [14]

Feeding

As generalist predators, velvet bellies feed on crustaceans (e.g. pasiphaeid shrimp and krill), cephalopods (e.g. ommastrephid squid and sepiolids), and bony fishes (e.g. shads, barracudinas, lanternfishes, and pouts). [11] Sharks off Italy also eat small amounts of nematodes, polychaete worms, and other cartilaginous fishes. [19] Studies of velvet bellies off Norway and Portugal, and in the Rockall Trough, have found small sharks under 27 cm (11 in) long feed mainly on the krill Meganyctiphanes norvegica and the small fish Maurolicus muelleri . As the sharks grow larger, their diets become more varied, consisting mainly of squid and the shrimp Pasiphaea tarda , as well fishes other than M. muelleri. [12] [16] [20] It has been speculated that smaller velvet bellies may be too slow to catch fast-moving cephalopods. [16] The cephalopod diet of adults overlaps with that of the Portuguese dogfish; the latter species may avoid competition with the velvet belly by living in deeper water. [15] The bite force exerted by the velvet belly is only around 1 N. [21]

Life history

The velvet belly is ovoviviparous, with the embryos hatching inside the uterus and being sustained by a yolk sac. The reproductive cycle may be two to three years long, with ovulation occurring in early autumn, fertilization in the summer (or possibly in the winter if females are capable of storing sperm), and parturition in late winter or early spring. The gestation period is under one year. [14] [22] The litter size is six to 20, with the number of young increasing with female size. At birth, the young measure 12–14 cm (4.7–5.5 in) long. [7] [22] The shark's bioluminescence develops before birth; the yolk sac is fluorescent before any photophores have formed, suggesting the mother transfers luminescent materials to her offspring. The first luminous tissue appears when the embryo is 55 mm (2.2 in) long, and the complete pattern is laid down by the time it is 95 mm (3.7 in) long. At birth, the young shark is already capable of counter-illumination with 80% of its ventral surface luminescent. [13]

The growth rate of the velvet belly is slow, though faster than some other deep-sea sharks, such as the leafscale gulper shark (Centrophorus squamosus) or the shortspine spurdog (Squalus mitsukurii). Males mature sexually at 28–33 cm (11–13 in) long and females at 34–36 cm (13–14 in) long. [11] [17] The average age at maturity is 4.0 years for males and 4.7 years for females, though four-year-old mature individuals of both sexes have been caught in the wild, along with immature females over eight years old. [22] Males and females eight and 11 years old, respectively, have been caught in the wild; the potential lifespan of this species has been estimated at 18 years for males and 22 years for females. [17] [22]

Human interactions

Throughout their range, substantial quantities of velvet bellies are caught as bycatch in bottom trawls meant for shrimp and lobsters, and deepwater longlines meant for other fish. Lacking commercial value, these sharks are almost always discarded with extremely high mortality, though occasionally they are dried and salted or made into fishmeal. [7] [17] The IUCN has listed the velvet belly under Least Concern overall, as its population remains stable across much of its range, and it is afforded some protection in the Mediterranean from a 2005 ban on bottom trawling below 1,000 m (3,300 ft). It has been assessed as Near Threatened, as its numbers have declined by almost 20% from 1970 to 19982004. [23] The slow reproductive rate of this species limits its capacity to recover from population depletion. [22]

Related Research Articles

<span class="mw-page-title-main">Squaliformes</span> Order of fishes

The Squaliformes are an order of sharks that includes about 126 species in seven families.

<span class="mw-page-title-main">Black dogfish</span> Species of shark

The black dogfish is a species of dogfish shark in the family Etmopteridae. It is common over the outer continental shelf and continental slope at depths of 180–2,250 m (590–7,380 ft). Females generally inhabit deeper water than males, and depending on the region, smaller sharks may occur at different depths than larger ones. This species is distributed widely in the Atlantic Ocean, from Greenland and Iceland to Virginia and West Africa in the north, and off southwestern Africa and Argentina in the south. The largest member of its family, the black dogfish, typically measures 60–75 cm (24–30 in) long. It has a stocky, dark brown body that is darker below than above, and bears scattered, minute bioluminescent organs. Its two dorsal fins are preceded by stout spines, and the anal fin is absent.

<span class="mw-page-title-main">Blackbelly lanternshark</span> Species of shark

The blackbelly lanternshark or lucifer shark is a shark of the family Etmopteridae found around the world in tropical and temperate seas at depths between 150 and 1,250 meters. Compared to other mesopelagic fish predators and invertebrates, the blackbelly lanternshark is thought to reside in shallower, more southern waters. E. lucifer can reach up to 47 centimeters in length and consumes mesopelagic cephalopods, fish, and crustaceans. Blackbelly lanternsharks are bioluminescent, using hormone controlled mechanisms to emit light through ventral photogenic organs called photophores and are presumed to be ovoviviparous. The blackbelly lanternshark has been classified as "Not Threatened" within the New Zealand Threat Classification System.

<span class="mw-page-title-main">Portuguese dogfish</span> Species of shark

The Portuguese dogfish or Portuguese shark, is a species of sleeper shark of the family Somniosidae. This globally distributed species has been reported down to a depth of 3,675 m (12,057 ft), making it the deepest-living shark known. It inhabits lower continental slopes and abyssal plains, usually staying near the bottom. Stocky and dark brown in color, the Portuguese dogfish can be distinguished from similar-looking species by the small spines in front of its dorsal fins. Its dermal denticles are also unusual, resembling the scales of a bony fish. This species typically reaches 0.9–1 m (3.0–3.3 ft) in length; sharks in the Mediterranean Sea are much smaller and have distinct depth and food preferences.

<i>Etmopterus</i> Genus of sharks

Etmopterus is a genus of lantern sharks in the squaliform family Etmopteridae. They are found in deep sea ecosystems of the Atlantic, Indian and Pacific Oceans.

<span class="mw-page-title-main">Blurred lanternshark</span> Species of shark

The blurred lanternshark is a little-known species of dogfish shark in the family Etmopteridae, found around the world in benthic and pelagic habitats from a depth of 110 m (360 ft) to over 1 km (0.62 mi) down. This shark forms the E. pusillus species group with the smooth lanternshark, which are distinguished from other members of its family by having irregularly arranged, flat-topped dermal denticles that give them a "smooth" appearance. Both species are slender-bodied with long heads, two dorsal fins bearing spines, no anal fins, and light-emitting photophores. The blurred lanternshark is larger, reaching 67 cm (26 in) or more in length. This species feeds on small squid, fishes, and fish eggs, and is ovoviviparous. It has been assessed as of Least Concern by the International Union for Conservation of Nature, because of its wide distribution and lack of threat from fishing pressure.

<span class="mw-page-title-main">Smooth lanternshark</span> Species of shark

The smooth lanternshark or slender lanternshark is a species of dogfish shark in the family Etmopteridae, found widely in the Atlantic and Pacific Oceans. It inhabits benthic environments at a depth of 274–1,000 m (899–3,281 ft), and pelagic environments at a depth of 0–708 m (0–2,323 ft). The smooth lanternshark forms a species group with the larger blurred lanternshark, both of which are distinguished from other members of their family by small, irregularly arranged dermal denticles with a truncated shape. This species has a slender, dark brown body with an indistinct black band on the sides over the pelvic fins, and reaches 50 cm (20 in) in length. This slow-growing, ovoviviparous shark feeds on smaller squid, fishes, and fish eggs. Smooth lanternsharks are often caught as bycatch in eastern Atlantic and Japanese commercial fisheries. The International Union for Conservation of Nature (IUCN) has evaluated this species as of Least Concern because of its wide distribution and limited threats.

<span class="mw-page-title-main">Blackmouth catshark</span> Species of shark

The blackmouth catshark is a species of catshark, and part of the family Scyliorhinidae, common in the northeastern Atlantic Ocean from Iceland to Senegal, including the Mediterranean Sea. It is typically found over the continental slope at depths of 150–1,400 m (490–4,590 ft), on or near muddy bottoms. The youngest sharks generally inhabit shallower water than the older juveniles and adults. This slim-bodied species is characterized by the black interior of its mouth, a marbled pattern of pale-edged brownish saddles or blotches along its back and tail, and a prominent saw-toothed crest of enlarged dermal denticles along the upper edge of its caudal fin. It reaches lengths of 50–79 cm (20–31 in), with sharks in the Atlantic growing larger than those in the Mediterranean.

<span class="mw-page-title-main">Green lanternshark</span> Species of shark

The green lanternshark is a species of dogfish shark in the family Etmopteridae, found in the western central Atlantic Ocean. This species usually occurs on the upper continental slope below a depth of 350 m (1,150 ft). Reaching 26 cm (10 in) in length, the green lanternshark has a slender body with a long, thin tail and low, conical dermal denticles on its flanks. It is dark brown or gray with ventral black coloration, which contain light-emitting photophores that may serve a cryptic and/or social function. Green lanternsharks are thought to be gregarious and may attack their prey, squid and octopus often larger than themselves, in packs. Reproduction is aplacental viviparous, with females giving birth to litters of one to three young. This relatively common shark is an occasional, valueless bycatch of commercial fisheries; currently it does not appear to be significantly threatened by human activities.

<span class="mw-page-title-main">Hawaiian lanternshark</span> Species of shark

The Hawaiian Lanternshark is a species of small squaliform shark in the family Etmopteridae.

<span class="mw-page-title-main">Dwarf lanternshark</span> Species of shark

The dwarf lanternshark is a species of dogfish shark in the family Etmopteridae and is the smallest shark in the world, reaching a maximum known length of 20 cm (8 in). It is known to be present only on the upper continental slopes off Colombia and Venezuela, at a depth of 283–439 m (928–1,440 ft). This species can be identified by its small size at maturity, long flattened head, and pattern of black ventral markings and a mid-dorsal line. Like other members of its genus, it is capable of producing light from a distinctive array of photophores. Reproduction is aplacental viviparous, with females gestating two or three young at a time. The dwarf lanternshark is not significant to commercial fisheries, but could be threatened by mortality from bycatch; the degree of impact from human activities on its population is unknown.

<span class="mw-page-title-main">Fringefin lanternshark</span> Species of shark

The fringefin lanternshark is a shark of the family Etmopteridae found in the western central Atlantic from Texas to Florida, northern Gulf of Mexico, and Mexico. It is endemic to this area. It is a deep water shark and is found about 220 to 915 meters below the surface, on the upper continental slopes of the Gulf. E. schultzi is a small shark, about 27–30 cm long and feeds on squid. It is also bioluminescent, which counter-illuminates it and helps with intraspecific interaction. Due to its limited range and the difficulty of collecting deep water species, it has not been evaluated by the IUCN Red List, but due to recent oil spills in the Gulf of Mexico, it is likely that fringefin lanternsharks have decreased in population.

<span class="mw-page-title-main">Slendertail lanternshark</span> Species of shark

The slendertail lanternshark or Moller's lanternshark is a shark of the family Etmopteridae found in the western Indian Ocean between latitudes 34°N and 46°S at depths between 250 and 860 m. It can grow up to 46 cm in length.

<span class="mw-page-title-main">Southern lanternshark</span> Species of shark

The southern lanternshark is a shark of the family Etmopteridae found in the southeast Pacific between latitudes 29°S and 59°S, at depths of between 220 and 1,460 m. This species has been found off Northland, off the Chatham Islands, on the Campbell Plateau, all in New Zealand waters. Its length is up to 60 cm. Reproduction is ovoviviparous, with 10 to 13 pups in a litter, length at birth about 18 cm. They exhibit bioluminescence.

<span class="mw-page-title-main">Great lanternshark</span> Species of shark

The great lanternshark is a shark of the family Etmopteridae found in the northeast and northwest Atlantic. Its name was given because, at the time of its discovery, it was thought to be bioluminescent, but this has been challenged.

<span class="mw-page-title-main">Splendid lanternshark</span> Species of shark

The splendid lanternshark is a shark of the family Etmopteridae found in the western Pacific at depths between 120 and 210 m. Through the classification of Etmopterus species into several clades based on the positioning of their bioluminescent photophores, the splendid lanternshark can be considered a member of the Etmopterus pusillus clade.

<span class="mw-page-title-main">Brown lanternshark</span> Species of shark

The brown lanternshark or bristled lanternshark is a little-known species of deep-sea dogfish shark in the family Etmopteridae. It is found off Japan and New Zealand, and possibly also South Africa and Australia, typically deeper than 300 m (980 ft). This species can be distinguished from other lanternsharks by its coloration, which is a uniform dark gray or brown without the ventral surface being much darker and clearly delineated from the rest of the body. The brown lanternshark feeds on small bony fishes, cephalopods, and crustaceans. Reproduction is ovoviviparous, with females giving birth to 9–18 young. An unusually high proportion of individuals in Suruga Bay are hermaphrodites, with both male and female characteristics.

<span class="mw-page-title-main">Blackmouth lanternshark</span> Species of shark

The blackmouth lanternshark is a species of dogfish shark within the family Etmopteridae. This species is part of a subgroup that includes one other species from within the family. It is known to inhabit the benthic zones of the Eastern Indian Ocean and the Arafura Sea. These sharks were first described in a 2002 issue of Cybium: International Journal of Ichthyology, and there is still much unknown about the species.

<i>Anelasma</i> Species of parasitic barnacles that attack sharks

Anelasma is a monotypic genus of goose barnacles that live as parasites on various shark hosts.

<span class="mw-page-title-main">Counter-illumination</span> Active camouflage using light matched to the background

Counter-illumination is a method of active camouflage seen in marine animals such as firefly squid and midshipman fish, and in military prototypes, producing light to match their backgrounds in both brightness and wavelength.

References

  1. Finucci, B.; Derrick, D.; Dia, M.; Ducrocq, M.; Neat, F.C.; Pacoureau, N.; Serena, F.; VanderWright, W.J. (2021). "Etmopterus spinax". IUCN Red List of Threatened Species . 2021: e.T161388A124475610. doi: 10.2305/IUCN.UK.2021-2.RLTS.T161388A124475610.en . Retrieved 19 November 2021.
  2. 1 2 2015-12-15 - Velvet belly lanternshark/Etmopterus spinax and Rabbit fish/Chimaera monstrosa at 20 meters depth , retrieved 2015-12-25
  3. 1 2 3 Jones, E.G.; Tselepides, E.; Bagley, P.M.; Collins, M.A. & Priede, I.G. (2003). "Bathymetric distribution of some benthic and benthopelagic species attracted to baited cameras and traps in the deep eastern Mediterranean". Marine Ecology Progress Series. 251: 75–86. Bibcode:2003MEPS..251...75J. doi: 10.3354/meps251075 .
  4. Straube, N.; Chenhong, L.; Claes, J.M.; Corrigan, S.; Naylor, G.J.P. (2015). "Molecular phylogeny of squaliforms and first occurrence of bioluminescence in sharks". Evolutionary Biology. 15: 162. doi: 10.1186/s12862-015-0446-6 . PMC   4537554 . PMID   26277575.
  5. Claes, J.M.; Aksnes, D.L.; Mallefet, J. (2010). "Phantom hunter of the fjords: Camouflage by counterillumination in a shark (Etmopterus spinax)". Journal of Experimental Marine Biology and Ecology. 388 (1–2): 28–32. doi:10.1016/j.jembe.2010.03.009.
  6. Straube, N.; Iglésias, S.P.; Sellos, D.Y.; Kriwet, J.; Schliewen, U.K. (2010). "Molecular phylogeny and node time estimation of bioluminescent lantern sharks (Elasmobranchii: Etmopteridae)". Molecular Phylogenetics and Evolution. 56 (3): 905–917. doi:10.1016/j.ympev.2010.04.042. PMID   20457263.
  7. 1 2 3 4 5 6 Compagno, L.J.V. (1984). Sharks of the World: An Annotated and Illustrated Catalogue of Shark Species Known to Date. Rome: Food and Agricultural Organization. p. 85. ISBN   92-5-101384-5.
  8. Springer, S. & G.H. Burgess (August 5, 1985). "Two New Dwarf Dogsharks (Etmopterus, Squalidae), Found off the Caribbean Coast of Colombia". Copeia. 1985 (3). American Society of Ichthyologists and Herpetologists: 584–591. doi:10.2307/1444748. JSTOR   1444748.
  9. 1 2 Ellis, R. (1996). Deep Atlantic: Life, Death, and Exploration in the Abyss. The Lyons Press. pp. 195–196. ISBN   1-55821-663-4.
  10. Sion, L.; Bozzano, A.; D'Onghia, G.; Capezzuto, F. & Panza, M. (2004). "Chondrichthyes species in deep waters of the Mediterranean Sea". Scientia Marina. 68 (S3): 153–162. doi: 10.3989/scimar.2004.68s3153 .
  11. 1 2 3 4 5 6 7 Martin, R.A. Deep Sea: Velvetbelly Lanternshark. ReefQuest Centre for Shark Research. Retrieved on June 24, 2009.
  12. 1 2 Mauchline, J. & Gordon, J.D.M. (1983). "Diets of the sharks and chimaeroids of the Rockall Trough, northeastern Atlantic Ocean". Marine Biology. 75 (2–3): 269–278. doi:10.1007/BF00406012. S2CID   84676692.
  13. 1 2 3 Claes, J.M. & Mallefet, J. (2008). "Early development of bioluminescence suggests camouflage by counter-illumination in the velvet belly lantern shark Etmopterus spinax (Squaloidea: Etmopteridae)". Journal of Fish Biology. 73 (6): 1337–1350. doi:10.1111/j.1095-8649.2008.02006.x.
  14. 1 2 3 Hickling, C.F. (1963). "On the small deep-sea shark Etmopterus spinax L., and its cirripede parasite Anelasma squalicola (Lovén)". Journal of the Linnean Society of London, Zoology. 45 (303): 17–24. doi:10.1111/j.1096-3642.1963.tb00484.x.
  15. 1 2 3 Carrassón, M.; Stefanescu, C. & Cartes, J.E. (1992). "Diets and bathymetric distributions of two bathyal sharks of the Catalan deep sea (western Mediterranean)". Marine Ecology Progress Series. 82 (1): 21–30. Bibcode:1992MEPS...82...21C. doi: 10.3354/meps082021 .
  16. 1 2 3 4 5 Klimpel, S.; Palm, H.W. & Seehagen, A. (2003). "Metazoan parasites and food composition of juvenile Etmopterus spinax (L., 1758) (Dalatiidae, Squaliformes) from the Norwegian Deep". Parasitology Research. 89 (4): 245–251. doi:10.1007/s00436-002-0741-1. PMID   12632160. S2CID   20906694.
  17. 1 2 3 4 Gennari, E. & Scacco, U. (2007). "First age and growth estimates in the deep water shark, Etmopterus Spinax (Linnaeus, 1758), by deep coned vertebral analysis". Marine Biology. 152 (5): 1207–1214. doi:10.1007/s00227-007-0769-y. S2CID   52087579.
  18. Schmidt-Nielsen, S.; Flood, A. & Stene, J. (1934). "On the size of the liver of some gristly fishes, their content of fat and vitamin A". Kongeleige Norske Videnskabers Selskab Forhandlinger. 7: 47–50.
  19. Serena, F.; Cecchi, E.; Mancusi, C. & Pajetta, R. (2006). "Contribution to the knowledge of the biology of Etmopterus spinax (Linnaeus 1758) (Chondrichthyes, Etmopteridae)". In FAO (ed.). Deep Sea 2003: Conference on the Governance and Management of Deep-sea Fisheries. Food and Agricultural Organization. pp. 388–394. ISBN   92-5-105457-6.
  20. Neiva, J.; Coelho, R. & Erzini, K. (2006). "Feeding habits of the velvet belly lanternshark Etmopterus spinax (Chondrichthyes: Etmopteridae) off the Algarve, southern Portugal". Journal of the Marine Biological Association of the United Kingdom. 86 (4): 835–841. Bibcode:2006JMBUK..86..835N. doi:10.1017/S0025315406013762. S2CID   84644449.
  21. Huber, D.R.; Claes, J.M.; Mallefet, J. & Herrel, A. (2009). "Is Extreme Bite Performance Associated with Extreme Morphologies in Sharks?". Physiological and Biochemical Zoology. 82 (1): 20–28. doi:10.1086/588177. PMID   19006469. S2CID   2686887.
  22. 1 2 3 4 5 Coelho, R. & Erzini, K. (2008). "Life history of a wide-ranging deepwater lantern shark in the north-east Atlantic, Etmopterus spinax (Chondrichthyes: Etmopteridae), with implications for conservation". Journal of Fish Biology. 73 (6): 1419–1443. doi:10.1111/j.1095-8649.2008.02021.x.
  23. Coelho, R.; Blasdale, T.; Mancusi, C.; Serena, F.; Guallart, J.; Ungaro, N.; Litvinov, F.; Crozier, P. & Stenberg, C. (2009). "Etmopterus spinax". IUCN Red List of Threatened Species . 2009: e.T161388A5412576. doi: 10.2305/IUCN.UK.2009-2.RLTS.T161388A5412576.en .