Weakly o-minimal structure

Last updated

In model theory, a weakly o-minimal structure is a model theoretic structure whose definable sets in the domain are just finite unions of convex sets.

Contents

Definition

A linearly ordered structure, M, with language L including an ordering relation <, is called weakly o-minimal if every parametrically definable subset of M is a finite union of convex (definable) subsets. A theory is weakly o-minimal if all its models are weakly o-minimal.

Note that, in contrast to o-minimality, it is possible for a theory to have models which are weakly o-minimal and to have other models which are not weakly o-minimal. [1]

Difference from o-minimality

In an o-minimal structure the definable sets in are finite unions of points and intervals, where interval stands for a sets of the form , for some a and b in . For weakly o-minimal structures this is relaxed so that the definable sets in M are finite unions of convex definable sets. A set is convex if whenever a and b are in , a < b and c   satisfies that a < c < b, then c is in C. Points and intervals are of course convex sets, but there are convex sets which are not either points or intervals, as explained below.

If we have a weakly o-minimal structure expanding (R,<), the real ordered field, then the structure will be o-minimal. The two notions are different in other settings though. For example, let R be the ordered field of real algebraic numbers with the usual ordering < inherited from R. Take a transcendental number, say π , and add a unary relation S to the structure given by the subset (π,π)  R. Now consider the subset A of R defined by the formula

so that the set consists of all strictly positive real algebraic numbers that are less than π. The set is clearly convex, but cannot be written as a finite union of points and intervals whose endpoints are in R. To write it as an interval one would either have to include the endpoint π, which isn't in R, or one would require infinitely many intervals, such as the union

Since we have a definable set that isn't a finite union of points and intervals, this structure is not o-minimal. However, it is known that the structure is weakly o-minimal, and in fact the theory of this structure is weakly o-minimal. [2]

Notes

  1. M.A.Dickmann, Elimination of Quantifiers for Ordered Valuation Rings, The Journal of symbolic Logic, Vol. 52, No. 1 (Mar., 1987), pp 116-128.
  2. D. Macpherson, D. Marker, C. Steinhorn, Weakly o-minimal structures and real closed fields, Trans. Amer. Math. Soc. 352 (2000), no. 12, pp.54355483, MR 1781273.

Related Research Articles

<span class="mw-page-title-main">Convex set</span> In geometry, set that intersects every line into a single line segment

In geometry, a subset of a Euclidean space, or more generally an affine space over the reals, is convex if, given any two points in the subset, the subset contains the whole line segment that joins them. Equivalently, a convex set or a convex region is a subset that intersects every line into a single line segment . For example, a solid cube is a convex set, but anything that is hollow or has an indent, for example, a crescent shape, is not convex.

<span class="mw-page-title-main">Basis (linear algebra)</span> Set of vectors used to define coordinates

In mathematics, a set B of vectors in a vector space V is called a basis if every element of V may be written in a unique way as a finite linear combination of elements of B. The coefficients of this linear combination are referred to as components or coordinates of the vector with respect to B. The elements of a basis are called basis vectors.

In mathematical logic, model theory is the study of the relationship between formal theories, and their models. The aspects investigated include the number and size of models of a theory, the relationship of different models to each other, and their interaction with the formal language itself. In particular, model theorists also investigate the sets that can be defined in a model of a theory, and the relationship of such definable sets to each other. As a separate discipline, model theory goes back to Alfred Tarski, who first used the term "Theory of Models" in publication in 1954. Since the 1970s, the subject has been shaped decisively by Saharon Shelah's stability theory.

In mathematical analysis and in probability theory, a σ-algebra on a set X is a nonempty collection Σ of subsets of X closed under complement, countable unions, and countable intersections. The pair is called a measurable space.

In mathematics, a topological space is, roughly speaking, a geometrical space in which closeness is defined but cannot necessarily be measured by a numeric distance. More specifically, a topological space is a set whose elements are called points, along with an additional structure called a topology, which can be defined as a set of neighbourhoods for each point that satisfy some axioms formalizing the concept of closeness. There are several equivalent definitions of a topology, the most commonly used of which is the definition through open sets, which is easier than the others to manipulate.

In commutative algebra, the prime spectrum of a ring R is the set of all prime ideals of R, and is usually denoted by ; in algebraic geometry it is simultaneously a topological space equipped with the sheaf of rings .

<span class="mw-page-title-main">Convex hull</span> Smallest convex set containing a given set

In geometry, the convex hull or convex envelope or convex closure of a shape is the smallest convex set that contains it. The convex hull may be defined either as the intersection of all convex sets containing a given subset of a Euclidean space, or equivalently as the set of all convex combinations of points in the subset. For a bounded subset of the plane, the convex hull may be visualized as the shape enclosed by a rubber band stretched around the subset.

In mathematics, a (real) interval is a set of real numbers that contains all real numbers lying between any two numbers of the set. For example, the set of numbers x satisfying 0 ≤ x ≤ 1 is an interval which contains 0, 1, and all numbers in between. Other examples of intervals are the set of numbers such that 0 < x < 1, the set of all real numbers , the set of nonnegative real numbers, the set of positive real numbers, the empty set, and any singleton.

In mathematics, a base for the topology τ of a topological space (X, τ) is a family of open subsets of X such that every open set of the topology is equal to the union of some sub-family of . For example, the set of all open intervals in the real number line is a basis for the Euclidean topology on because every open interval is an open set, and also every open subset of can be written as a union of some family of open intervals.

In mathematics, in set theory, the constructible universe, denoted by L, is a particular class of sets that can be described entirely in terms of simpler sets. L is the union of the constructible hierarchyLα. It was introduced by Kurt Gödel in his 1938 paper "The Consistency of the Axiom of Choice and of the Generalized Continuum-Hypothesis". In this paper, he proved that the constructible universe is an inner model of ZF set theory, and also that the axiom of choice and the generalized continuum hypothesis are true in the constructible universe. This shows that both propositions are consistent with the basic axioms of set theory, if ZF itself is consistent. Since many other theorems only hold in systems in which one or both of the propositions is true, their consistency is an important result.

A CW complex is a kind of a topological space that is particularly important in algebraic topology. It was introduced by J. H. C. Whitehead to meet the needs of homotopy theory. This class of spaces is broader and has some better categorical properties than simplicial complexes, but still retains a combinatorial nature that allows for computation. The C stands for "closure-finite", and the W for "weak" topology.

In mathematics, a Radon measure, named after Johann Radon, is a measure on the σ-algebra of Borel sets of a Hausdorff topological space X that is finite on all compact sets, outer regular on all Borel sets, and inner regular on open sets. These conditions guarantee that the measure is "compatible" with the topology of the space, and most measures used in mathematical analysis and in number theory are indeed Radon measures.

<span class="mw-page-title-main">Antimatroid</span> Mathematical system of orderings or sets

In mathematics, an antimatroid is a formal system that describes processes in which a set is built up by including elements one at a time, and in which an element, once available for inclusion, remains available until it is included. Antimatroids are commonly axiomatized in two equivalent ways, either as a set system modeling the possible states of such a process, or as a formal language modeling the different sequences in which elements may be included. Dilworth (1940) was the first to study antimatroids, using yet another axiomatization based on lattice theory, and they have been frequently rediscovered in other contexts.

In mathematics, a Riesz space, lattice-ordered vector space or vector lattice is a partially ordered vector space where the order structure is a lattice.

<span class="mw-page-title-main">Ordered vector space</span> Vector space with a partial order

In mathematics, an ordered vector space or partially ordered vector space is a vector space equipped with a partial order that is compatible with the vector space operations.

In mathematics, the Tarski–Seidenberg theorem states that a set in (n + 1)-dimensional space defined by polynomial equations and inequalities can be projected down onto n-dimensional space, and the resulting set is still definable in terms of polynomial identities and inequalities. The theorem—also known as the Tarski–Seidenberg projection property—is named after Alfred Tarski and Abraham Seidenberg. It implies that quantifier elimination is possible over the reals, that is that every formula constructed from polynomial equations and inequalities by logical connectives (or), (and), ¬ (not) and quantifiers , (exists) is equivalent to a similar formula without quantifiers. An important consequence is the decidability of the theory of real-closed fields.

In mathematical logic, and more specifically in model theory, an infinite structure (M,<,...) which is totally ordered by < is called an o-minimal structure if and only if every definable subset X ⊂ M is a finite union of intervals and points.

This is a glossary of set theory.