Amurian microplate

Last updated
Amurian microplate
AmurPlate.png
Type Minor
Movement1South
Speed110 mm/year
Features Amur, Yalu, Korea, Manchuria, Lake Baikal, Sea of Japan, southwest Honshu (Kansai, Chūgoku), Shikoku, most of Kyushu
1Relative to the African plate

The Amurian microplate (or Amur microplate; also occasionally referred to as the China Plate, not to be confused with the South China Subplate)[ citation needed ] is a minor tectonic plate in the northern and eastern hemispheres.

Contents

The Amurian Plate is named after the Amur River, which forms the border between the Russian Far East and Northeast China. It is bounded on the north, west, and southwest by the Eurasian plate, on the east by the Okhotsk Plate, to the southeast by the Philippine Sea plate along the Suruga Trough and the Nankai Trough, and the Okinawa plate, and the Yangtze plate. [1]

The Amurian Plate may have been involved in the 1975 Haicheng earthquake and the 1976 Tangshan earthquake in China.[ citation needed ]

Boundaries

The Amurian microplate is a division within the Eurasian plate, with an unknown western boundary, defined on the south by the Qinling suture zone[ additional citation(s) needed ] in central China and the Baikal Rift Zone and Stanovoy Mountains on the north. [2]

The Baikal Rift Zone is considered a boundary between the Amurian Plate and the Eurasian plate. GPS measurements indicate that the plate is slowly rotating counterclockwise. The boundary with the Okhotsk Plate is the eastern margin of the Sea of Japan. [3]

Geography

It covers northeastern China, the Korean Peninsula, the Sea of Japan, Shikoku, Kyushu, southwest Honshu (Kansai, Chūgoku), eastern Mongolia and the south of Russian Far East.

See also

Related Research Articles

<span class="mw-page-title-main">Eurasian plate</span> Tectonic plate which includes most of the continent of Eurasia

The Eurasian plate is a tectonic plate that includes most of the continent of Eurasia, with the notable exceptions of the Indian subcontinent, the Arabian subcontinent and the area east of the Chersky Range in eastern Siberia. It also includes oceanic crust extending westward to the Mid-Atlantic Ridge and northward to the Gakkel Ridge.

<span class="mw-page-title-main">North American plate</span> Large tectonic plate including most of North America, Greenland and part of Siberia

The North American plate is a tectonic plate containing most of North America, Cuba, the Bahamas, extreme northeastern Asia, and parts of Iceland and the Azores. With an area of 76 million km2 (29 million sq mi), it is the Earth's second largest tectonic plate, behind the Pacific plate.

<span class="mw-page-title-main">Philippine Sea plate</span> Oceanic tectonic plate to the east of the Philippines

The Philippine Sea plate or the Philippine plate is a tectonic plate comprising oceanic lithosphere that lies beneath the Philippine Sea, to the east of the Philippines. Most segments of the Philippines, including northern Luzon, are part of the Philippine Mobile Belt, which is geologically and tectonically separate from the Philippine Sea plate.

<span class="mw-page-title-main">African plate</span> Tectonic plate underlying Africa

The African plate, also known as the Nubian plate, is a major tectonic plate that includes much of the continent of Africa and the adjacent oceanic crust to the west and south. It is bounded by the North American plate and South American plate to the west ; the Arabian plate and Somali plate to the east; the Eurasian plate, Aegean Sea plate and Anatolian plate to the north; and the Antarctic plate to the south.

<span class="mw-page-title-main">Australian plate</span> Major tectonic plate separated from Indo-Australian plate about 3 million years ago

The Australian plate is a major tectonic plate in the eastern and, largely, southern hemispheres. Originally a part of the ancient continent of Gondwana, Australia remained connected to India and Antarctica until approximately 100 million years ago when India broke away and began moving north. Australia and Antarctica had begun rifting by 96 million years ago and completely separated a while after this, some believing as recently as 45 million years ago, but most accepting presently that this had occurred by 60 million years ago.

<span class="mw-page-title-main">Triple junction</span> Meeting point of three tectonic plates

A triple junction is the point where the boundaries of three tectonic plates meet. At the triple junction each of the three boundaries will be one of three types – a ridge (R), trench (T) or transform fault (F) – and triple junctions can be described according to the types of plate margin that meet at them. Of the ten possible types of triple junctions only a few are stable through time. The meeting of four or more plates is also theoretically possible but junctions will only exist instantaneously.

<span class="mw-page-title-main">Geology of Japan</span>

The islands of Japan are primarily the result of several large ocean movements occurring over hundreds of millions of years from the mid-Silurian to the Pleistocene, as a result of the subduction of the Philippine Sea Plate beneath the continental Amurian Plate and Okinawa Plate to the south, and subduction of the Pacific Plate under the Okhotsk Plate to the north.

<span class="mw-page-title-main">Okhotsk microplate</span> Minor tectonic plate in Asia

The Okhotsk microplate is a proposed minor tectonic plate covering the Kamchatka Peninsula, Magadan Oblast, and Sakhalin Island of Russia; Hokkaido, Kantō and Tōhoku regions of Japan; the Sea of Okhotsk, as well as the disputed Kuril Islands.

<span class="mw-page-title-main">Geology of Turkey</span>

The geology of Turkey is the product of a wide variety of tectonic processes that have shaped Anatolia over millions of years, a process which continues today as evidenced by frequent earthquakes and occasional volcanic eruptions.

<span class="mw-page-title-main">Easter microplate</span> Very small tectonic plate to the west of Easter Island

The Easter plate is a tectonic microplate located to the west of Easter Island off the west coast of South America in the middle of the Pacific Ocean, bordering the Nazca plate to the east and the Pacific plate to the west. It was discovered from looking at earthquake distributions that were offset from the previously perceived Nazca-Pacific Divergent boundary. This young plate is 5.25 million years old and is considered a microplate because it is small with an area of approximately 160,000 square kilometres (62,000 sq mi). Seafloor spreading along the Easter microplate's borders have some of the highest global rates, ranging from 50 to 140 millimetres /yr.

<span class="mw-page-title-main">Baikal Rift Zone</span> Part of the boundary between the Amur and Eurasian tectonic plates.

The Baikal Rift Zone is a series of continental rifts centered beneath Lake Baikal in southeastern Russia. Current strain in the rifts tends to be extending with some shear movement. A series of basins form along the zone for more than 2,000 kilometres (1,200 mi), creating a rift valley. The rifts form between the Eurasian Plate to the west and the Amur Plate to the east.

<span class="mw-page-title-main">Nankai megathrust earthquakes</span> Class of earthquakes in Japan

Nankai megathrust earthquakes are great megathrust earthquakes that occur along the Nankai megathrust – the fault under the Nankai Trough – which forms the plate interface between the subducting Philippine Sea Plate and the overriding Amurian Plate, which dips beneath southwestern Honshu, Japan. The fault is divided into five segments in three zones, which rupture separately or in combination, and depending on location, the resulting earthquakes are subdivided by zone from west to east into Nankai earthquakes, Tōnankai earthquakes, and Tōkai earthquakes.

<span class="mw-page-title-main">Caroline plate</span> Minor oceanic tectonic plate north of New Guinea

The Caroline plate is a minor tectonic plate that straddles the Equator in the eastern hemisphere located north of New Guinea. It forms a subduction zone along the border with the Bird's Head plate and other minor plates of the New Guinea region to the south. A transform boundary forms the northern border with the Pacific plate. Along the border with the Philippine Sea plate is a convergent boundary that transitions into a rift.

This is a list of articles related to plate tectonics and tectonic plates.

<span class="mw-page-title-main">Philippine Mobile Belt</span> Tectonic boundary

In the geology of the Philippines, the Philippine Mobile Belt is a complex portion of the tectonic boundary between the Eurasian Plate and the Philippine Sea Plate, comprising most of the country of the Philippines. It includes two subduction zones, the Manila Trench to the west and the Philippine Trench to the east, as well as the Philippine Fault System. Within the Belt, a number of crustal blocks or microplates which have been shorn off the adjoining major plates are undergoing massive deformation.

<span class="mw-page-title-main">Geology of the Pacific Ocean</span>

The Pacific Ocean evolved in the Mesozoic from the Panthalassic Ocean, which had formed when Rodinia rifted apart around 750 Ma. The first ocean floor which is part of the current Pacific Plate began 160 Ma to the west of the central Pacific and subsequently developed into the largest oceanic plate on Earth.

<span class="mw-page-title-main">Eastern margin of the Sea of Japan</span> Plate boundary between the Amurian and Okhotsk plates in East Asia

The eastern margin of the Sea of Japan is a zone of concentrated geological strain which extends several hundred kilometers and north–south along the eastern margin of the Sea of Japan. The margin has undergone convergence tectonics since the end of the Pliocene. It is believed to be an incipient subduction zone which defines the tectonic boundary between the Amurian and Okhotsk plates. This geological zone is seismically active and has been the source of destructive tsunamis. The feature runs off the west coast of Honshu, passes west of the Shakotan Peninsula on Hokkaido and through the Strait of Tartary, between Sakhalin and mainland Russia.

<span class="mw-page-title-main">Trobriand plate</span> Small tectonic plate located to the east of the island of New Guinea

The Trobriand Plate was, and likely is, an independent microplate between New Guinea and the Solomon Islands. It has some unique geology, having the presence of the youngest metamorphic core complexes on earth. If there is presently active subduction between it and the Solomon Plate, at the Trobriand Trough, it continues to be an active microplate. Otherwise in the latest tectonic models it has merged with the Solomon Sea Plate, which becomes somewhat larger than predicted by Bird's 2003 model of Tectonic Plates. As a smaller Solomon Sea Plate is totally underwater, global positioning data can not resolve this issue. The area of the plate is associated with earthquake and volcanic activity as part of the Pacific Ring of Fire.

References

  1. Yu. F. Malyshev, et al. Deep structure of the Amur lithospheric Plate border zone.
  2. Barnes, Gina L. (2022). Tectonic Archaeology: Subduction Zone Geology in Japan and Its Archaeological Implications. Archaeopress Publishing Limited. pp. 35–6.
  3. Nakamura, K. (1983). "Possible nascent trench along the eastern Japan Sea as the convergent boundary between Eurasian and North American plates". Bull. Earthq. Res. Inst.

Further reading