IBM code page 932 (abbreviated as IBM-932 [1] or ambiguously as CP932) is one of IBM's extensions of Shift JIS. The coded character sets are JIS X 0201:1976, JIS X 0208:1983, [1] IBM extensions and IBM extensions for IBM 1880 UDC. It is the combination of the single-byte Code page 897 and the double-byte Code page 301. [2] Code page 301 is designed to encode the same repertoire as IBM Japanese DBCS-Host. [3]
IBM-932 resembles IBM-943. One difference is that IBM-932 encodes the JIS X 0208:1983 characters but preserves the 1978 ordering, whereas IBM-943 uses the 1983 ordering [1] (i.e. the character variant swaps made in JIS X 0208:1983). Another difference is that IBM-932 does not incorporate the NEC selected extensions, which IBM-943 includes for Microsoft compatibility. [1]
IBM-942 includes the same double-byte codes as IBM-932 (those from Code page 301) but includes additional single-byte extensions. International Components for Unicode treats "ibm-932" and "ibm-942" as aliases for the same decoder. [4]
IBM-932 contains 7-bit ISO 646 codes, and Japanese characters are indicated by the high bit of the first byte being set to 1. Some code points in this page require a second byte, so characters use either 8 or 16 bits for encoding.
|
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Character encoding is the process of assigning numbers to graphical characters, especially the written characters of human language, allowing them to be stored, transmitted, and transformed using digital computers. The numerical values that make up a character encoding are known as "code points" and collectively comprise a "code space", a "code page", or a "character map".
In computing, JIS encoding refers to several Japanese Industrial Standards for encoding the Japanese language. Strictly speaking, the term means either:
ISO/IEC 2022Information technology—Character code structure and extension techniques, is an ISO/IEC standard in the field of character encoding. It is equivalent to the ECMA standard ECMA-35, the ANSI standard ANSI X3.41 and the Japanese Industrial Standard JIS X 0202. Originating in 1971, it was most recently revised in 1994.
Shift JIS is a character encoding for the Japanese language, originally developed by the Japanese company ASCII Corporation in conjunction with Microsoft and standardized as JIS X 0208 Appendix 1.
Extended Unix Code (EUC) is a multibyte character encoding system used primarily for Japanese, Korean, and simplified Chinese (characters).
A CCSID is a 16-bit number that represents a particular encoding of a specific code page. For example, Unicode is a code page that has several character encoding schemes —including UTF-8, UTF-16 and UTF-32—but which may or may not actually be accompanied by a CCSID number to indicate that this encoding is being used.
JIS X 0201, a Japanese Industrial Standard developed in 1969, was the first Japanese electronic character set to become widely used. The character set was initially known as JIS C 6220 before the JIS category reform. Its two forms were a 7-bit encoding or an 8-bit encoding, although the 8-bit form was dominant until Unicode replaced it. The full name of this standard is 7-bit and 8-bit coded character sets for information interchange (7ビット及び8ビットの情報交換用符号化文字集合).
Half-width kana are katakana characters displayed compressed at half their normal width, instead of the usual square (1:1) aspect ratio. For example, the usual (full-width) form of the katakana ka is カ while the half-width form is カ. Half-width hiragana is included in Unicode, and it is usable on Web or in e-books via CSS's font-feature-settings: "hwid" 1
with Adobe-Japan1-6 based OpenType fonts. Half-width kanji is usable on modern computers, and is used in some receipt printers, electric bulletin board and old computers.
In CJK computing, graphic characters are traditionally classed into fullwidth and halfwidth characters. Unlike monospaced fonts, a halfwidth character occupies half the width of a fullwidth character, hence the name.
JIS X 0212 is a Japanese Industrial Standard defining a coded character set for encoding supplementary characters for use in Japanese. This standard is intended to supplement JIS X 0208. It is numbered 953 or 5049 as an IBM code page.
JIS X 0208 is a 2-byte character set specified as a Japanese Industrial Standard, containing 6879 graphic characters suitable for writing text, place names, personal names, and so forth in the Japanese language. The official title of the current standard is 7-bit and 8-bit double byte coded KANJI sets for information interchange. It was originally established as JIS C 6226 in 1978, and has been revised in 1983, 1990, and 1997. It is also called Code page 952 by IBM. The 1978 version is also called Code page 955 by IBM.
KS X 1001, "Code for Information Interchange ", formerly called KS C 5601, is a South Korean coded character set standard to represent hangul and hanja characters on a computer.
CJK Compatibility Ideographs is a Unicode block created to contain mostly Han characters that were encoded in multiple locations in other established character encodings, in addition to their CJK Unified Ideographs assignments, in order to retain round-trip compatibility between Unicode and those encodings. However, it also contains 12 unified ideographs sourced from Japanese character sets from IBM.
Code page 895 is a 7-bit character set and is Japan's national ISO 646 variant. It is the Roman set of the JIS X 0201 Japanese Standard and is variously called Japan 7-Bit Latin, JISCII, JIS Roman, JIS C6220-1969-ro, ISO646-JP or Japanese-Roman. Its ISO-IR registration number is 14.
Microsoft Windows code page 932, also called Windows-31J amongst other names, is the Microsoft Windows code page for the Japanese language, which is an extended variant of the Shift JIS Japanese character encoding. It contains standard 7-bit ASCII codes, and Japanese characters are indicated by the high bit of the first byte being set to 1. Some code points in this page require a second byte, so characters use either 8 or 16 bits for encoding.
Code page 942 is one of IBM's extensions of Shift JIS. The coded character sets are JIS X 0201, JIS X 0208, IBM extensions for IBM 1880 UDC and IBM extensions. It is the combination of the single-byte Code page 1041 and the double-byte Code page 301.
IBM code page 949 (IBM-949) is a character encoding which has been used by IBM to represent Korean language text on computers. It is a variable-width encoding which represents the characters from the Wansung code defined by the South Korean standard KS X 1001 in a format compatible with EUC-KR, but adds IBM extensions for additional hanja, additional precomposed Hangul syllables, and user-defined characters.
IBM code page 936 is a character encoding for Simplified Chinese including 1880 user-defined characters (UDC), which was superseded in 1993. It is a combination of the single-byte Code page 903 and the double-byte Code page 928. Code page 946 uses the same double-byte component, but an extended single-byte component.
Code page 897 is IBM's implementation of the 8-bit form of JIS X 0201. It includes several additional graphical characters in the C0 control characters area, and the code points in question may be used as control characters or graphical characters depending on the context, similarly in concept to OEM-US, but with different graphical characters. The C0 rows are shown below.
Several mutually incompatible versions of the Extended Binary Coded Decimal Interchange Code (EBCDIC) have been used to represent the Japanese language on computers, including variants defined by Hitachi, Fujitsu, IBM and others. Some are variable-width encodings, employing locking shift codes to switch between single-byte and double-byte modes. Unlike other EBCDIC locales, the lowercase basic Latin letters are often not preserved in their usual locations.