Diffusion Inhibitor

Last updated
Diffusion Inhibitor
Device type toroidal
Location United States
Affiliation NACA
History
Year(s) of operation1938–1938

The Diffusion Inhibitor is the first known attempt to build a working fusion power device. [1] It was designed and built at the National Advisory Committee for Aeronautics' (NACA) Langley Memorial Aeronautical Laboratory beginning in the spring of 1938. The basic concept was developed by Arthur Kantrowitz and his boss, Eastman Jacobs. They deliberately picked a misleading name to avoid the project being detected by NACA's headquarters in Washington, D.C., as they believed it would immediately be cancelled if their superiors learned of it.

Contents

In overall terms, the device was very similar to the toroidal magnetic confinement fusion reactor designs that emerged in the 1950s and 60s, with a strong physical resemblance to the z-pinch and tokamak devices. The major difference was that it used radio waves to heat the plasma while using the magnetic field for confinement alone, not compression. After several early experiments which showed no sign of high-energy releases, NACA director George William Lewis happened into the lab and immediately shut it down.

History

In 1936, Arthur Kantrowitz, a recent physics graduate from Columbia University, joined NACA's Langley Memorial Aeronautical Laboratory. In early 1938 he read an article that noted Westinghouse had recently purchased a Van de Graaff generator and concluded the company was beginning research into nuclear power, following the footsteps of Mark Oliphant who demonstrated fusion of hydrogen isotopes in 1932 using a particle accelerator. [2] His direct supervisor, Eastman Jacobs, also expressed an interest in the concept when Kantrowitz showed him the article. [3]

Kantrowitz began canvassing the literature and came across Hans Bethe's paper in Reviews of Modern Physics about the known types of nuclear reactions and Bethe's speculations on the ones taking place in stars, [3] work that would lead to the Nobel Prize in Physics. [4] This led Kantrowitz to consider the concept of heating hydrogen to the temperatures seen inside stars, with the expectation that one could build a fusion reactor. [3] The easiest reaction in the list was deuterium-deuterium, but having only been discovered in 1932, the supply of deuterium was extremely limited. A pure hydrogen-hydrogen reaction was selected instead, although this would require much higher temperatures to work. [5]

Kantrowitz's idea was to use radio frequency signals to heat a plasma, in the same way that a microwave oven uses radio signals to heat food. The system did not have to use microwave frequencies, however, as the charged particles in a plasma will efficiently absorb a wide range of frequencies. This allowed Kantrowitz to use a conventional radio transmitter as the source, building a 150 W oscillator for the purpose. [5]

In order to produce any detectable level of fusion reactions, the system would have to heat the plasma to about 10 million degrees Celsius, a temperature that would melt any physical container. At these temperatures, even the atoms of the fuel itself break up into a fluid of separate nuclei and electrons, a state known as a plasma. Kantrowitz concluded the simplest solution was to use magnetic fields to confine the plasma because plasmas are electrically charged so their movement can be controlled by magnetic fields. [5]

When placed within a magnetic field, the electrons and protons of a hydrogen plasma will orbit around the magnetic lines of force. This means that if the plasma were within a solenoid, the field would keep the particles confined away from the walls but they would be free to travel along the lines and out the ends of the solenoid. At fusion temperatures, the particles are moving at the equivalent of thousands of miles per hour, so this would happen almost instantly. Kantrowitz came to the conclusion that many others did: The simple solution is to bend the solenoid around into a circle so the particles would flow around the resulting ring-shaped toroidal enclosure. [5]

Jacobs approached the lab's director, George W. Lewis, to arrange a small amount of funding, explaining that such a system might one day be used for aircraft propulsion. To disguise the actual purpose from NACA leadership, they called it the "Diffusion Inhibitor". [5] Lewis agreed to provide $5,000 (equivalent to $103,948in 2022). [5] The torus was wound with copper magnet cables which were cooled by water, and for a power source, they connected it to the motor circuits of a wind tunnel Jacobs had built. The idea was to measure the resulting fusion reactions by their X-rays, which are emitted from very hot objects. [5]

Because the city's power supply was limited, the wind tunnel was only allowed to operate late at night or early morning and for no more than half an hour at maximum power. Using film developed for taking dental x-rays as their detector, the two fired up the machine but found no signal. Believing the problem was that the radio oscillator didn't have enough power, they tried again while manually holding in the circuit breakers to supply more current. Again, nothing appeared on the film. They concluded that something was causing the plasma to be lost from the center of the reactor, but did not have an obvious solution. [6]

No further experiments were carried out. Shortly after the first runs, Lewis visited the lab, listened to Jacobs's explanation of the system, and immediately shut it down. [7]

It would later be understood that the simple torus design does not correctly confine a plasma. When a solenoid is bent around into a circle, the magnets ringing the container end up being spread apart from each other on the outside circumference. That results in the field being weaker on the outside of the container than the inside. This asymmetry causes the plasma to drift away from the center, eventually hitting the walls. [6] [8]

Related Research Articles

<span class="mw-page-title-main">Nuclear fusion</span> Process of combining atomic nuclei

Nuclear fusion is a reaction in which two or more atomic nuclei, usually deuterium and tritium, combine to form one or more different atomic nuclei and subatomic particles. The difference in mass between the reactants and products is manifested as either the release or absorption of energy. This difference in mass arises due to the difference in nuclear binding energy between the atomic nuclei before and after the reaction. Nuclear fusion is the process that powers active or main-sequence stars and other high-magnitude stars, where large amounts of energy are released.

<span class="mw-page-title-main">Stellarator</span> Plasma device using external magnets to confine plasma

A stellarator is a plasma device that relies primarily on external magnets to confine a plasma. Scientists researching magnetic confinement fusion aim to use stellarator devices as a vessel for nuclear fusion reactions. The name refers to the possibility of harnessing the power source of the stars, such as the Sun. It is one of the earliest fusion power devices, along with the z-pinch and magnetic mirror.

<span class="mw-page-title-main">Tokamak</span> Magnetic confinement device used to produce thermonuclear fusion power

A tokamak is a device which uses a powerful magnetic field to confine plasma in the shape of a torus. The tokamak is one of several types of magnetic confinement devices being developed to produce controlled thermonuclear fusion power. As of 2016, it was the leading candidate for a practical fusion reactor. The word "tokamak" is derived from a Russian acronym meaning "toroidal chamber with magnetic coils".

<span class="mw-page-title-main">Fusor</span> An apparatus to create nuclear fusion

A fusor is a device that uses an electric field to heat ions to a temperature in which they undergo nuclear fusion. The machine induces a voltage between two metal cages, inside a vacuum. Positive ions fall down this voltage drop, building up speed. If they collide in the center, they can fuse. This is one kind of an inertial electrostatic confinement device – a branch of fusion research.

<span class="mw-page-title-main">Fusion power</span> Electricity generation through nuclear fusion

Fusion power is a proposed form of power generation that would generate electricity by using heat from nuclear fusion reactions. In a fusion process, two lighter atomic nuclei combine to form a heavier nucleus, while releasing energy. Devices designed to harness this energy are known as fusion reactors. Research into fusion reactors began in the 1940s, but as of 2023, no device has reached net power.

This timeline of nuclear fusion is an incomplete chronological summary of significant events in the study and use of nuclear fusion.

<span class="mw-page-title-main">Levitated dipole</span>

A levitated dipole is a type of nuclear fusion reactor design using a superconducting torus which is magnetically levitated inside the reactor chamber. The name refers to the magnetic dipole that forms within the reaction chamber, similar to Earth's or Jupiter's magnetospheres. It is believed that such an apparatus could contain plasma more efficiently than other fusion reactor designs. The concept of the levitated dipole as a fusion reactor was first theorized by Akira Hasegawa in 1987.

<span class="mw-page-title-main">Tokamak Fusion Test Reactor</span> Former experimental tokamak at Princeton Plasma Physics Laboratory

The Tokamak Fusion Test Reactor (TFTR) was an experimental tokamak built at Princeton Plasma Physics Laboratory (PPPL) circa 1980 and entering service in 1982. TFTR was designed with the explicit goal of reaching scientific breakeven, the point where the heat being released from the fusion reactions in the plasma is equal or greater than the heating being supplied to the plasma by external devices to warm it up.

<span class="mw-page-title-main">Aneutronic fusion</span> Form of fusion power

Aneutronic fusion is any form of fusion power in which very little of the energy released is carried by neutrons. While the lowest-threshold nuclear fusion reactions release up to 80% of their energy in the form of neutrons, aneutronic reactions release energy in the form of charged particles, typically protons or alpha particles. Successful aneutronic fusion would greatly reduce problems associated with neutron radiation such as damaging ionizing radiation, neutron activation, reactor maintenance, and requirements for biological shielding, remote handling and safety.

<span class="mw-page-title-main">Magnetic confinement fusion</span> Approach to controlled thermonuclear fusion using magnetic fields

Magnetic confinement fusion (MCF) is an approach to generate thermonuclear fusion power that uses magnetic fields to confine fusion fuel in the form of a plasma. Magnetic confinement is one of two major branches of controlled fusion research, along with inertial confinement fusion.

<span class="mw-page-title-main">Madison Symmetric Torus</span>

The Madison Symmetric Torus (MST) is a reversed field pinch (RFP) physics experiment with applications to both fusion energy research and astrophysical plasmas.

<span class="mw-page-title-main">ZETA (fusion reactor)</span> Experimental fusion reactor in the United Kingdom

ZETA, short for Zero Energy Thermonuclear Assembly, was a major experiment in the early history of fusion power research. Based on the pinch plasma confinement technique, and built at the Atomic Energy Research Establishment in the United Kingdom, ZETA was larger and more powerful than any fusion machine in the world at that time. Its goal was to produce large numbers of fusion reactions, although it was not large enough to produce net energy.

<span class="mw-page-title-main">National Spherical Torus Experiment</span>

The National Spherical Torus Experiment (NSTX) is a magnetic fusion device based on the spherical tokamak concept. It was constructed by the Princeton Plasma Physics Laboratory (PPPL) in collaboration with the Oak Ridge National Laboratory, Columbia University, and the University of Washington at Seattle. It entered service in 1999. In 2012 it was shut down as part of an upgrade program and became NSTX-U, for Upgrade.

The beta of a plasma, symbolized by β, is the ratio of the plasma pressure (p = nkBT) to the magnetic pressure (pmag = B²/2μ0). The term is commonly used in studies of the Sun and Earth's magnetic field, and in the field of fusion power designs.

<span class="mw-page-title-main">Spherical tokamak</span> Fusion power device

A spherical tokamak is a type of fusion power device based on the tokamak principle. It is notable for its very narrow profile, or aspect ratio. A traditional tokamak has a toroidal confinement area that gives it an overall shape similar to a donut, complete with a large hole in the middle. The spherical tokamak reduces the size of the hole as much as possible, resulting in a plasma shape that is almost spherical, often compared to a cored apple. The spherical tokamak is sometimes referred to as a spherical torus and often shortened to ST.

TAE Technologies, formerly Tri Alpha Energy, is an American company based in Foothill Ranch, California developing aneutronic fusion power. The company's design relies on an advanced beam-driven field-reversed configuration (FRC), which combines features from accelerator physics and other fusion concepts in a unique fashion, and is optimized for hydrogen-boron fuel, also known as proton-boron and p-B11. It regularly publishes theoretical and experimental results in academic journals with hundreds of publications and posters at scientific conferences and in a research library hosting these articles on its website. TAE has developed five generations of original fusion platforms with a sixth currently in development. It aims to manufacture a prototype commercial fusion reactor by 2030.

Colliding beam fusion (CBF), or colliding beam fusion reactor (CBFR), is a class of fusion power concepts that are based on two or more intersecting beams of fusion fuel ions that are independently accelerated to fusion energies using a variety of particle accelerator designs or other means. One of the beams may be replaced by a static target, in which case the approach is termed accelerator based fusion or beam-target fusion, but the physics is the same as colliding beams.

<span class="mw-page-title-main">Theta pinch</span> Fusion power reactor design

Theta-pinch, or θ-pinch, is a type of fusion power reactor design. The name refers to the configuration of currents used to confine the plasma fuel in the reactor, arranged to run around a cylinder in the direction normally denoted as theta in polar coordinate diagrams. The name was chosen to differentiate it from machines based on the pinch effect that arranged their currents running down the centre of the cylinder; these became known as z-pinch machines, referring to the Z-axis in cartesian coordinates.

The toroidal solenoid was an early 1946 design for a fusion power device designed by George Paget Thomson and Moses Blackman of Imperial College London. It proposed to confine a deuterium fuel plasma to a toroidal (donut-shaped) chamber using magnets, and then heating it to fusion temperatures using radio frequency energy in the fashion of a microwave oven. It is notable for being the first such design to be patented, filing a secret patent on 8 May 1946 and receiving it in 1948.

Low to High Confinement Mode Transition, more commonly referred to as L-H transition, is a crucial phenomenon in the fields of plasma physics and magnetic confinement fusion, signifying the transition from less efficient plasma confinement to highly efficient modes. The L-H transition, a pivotal milestone in the development of nuclear fusion, enables the confinement of high-temperature plasmas. The transition is dependent on many factors such as density, magnetic field strength, heating method, plasma fueling and edge plasma control, and is made possible through mechanisms such as edge turbulence, E×B shear, edge electric field, and edge current and plasma flow. Researchers studying this field use tools such as Electron Cyclotron Emission, Thomson Scattering, magnetic diagnostics, and Langmuir probes to gauge the PLH and seek to lower this value. This confinement is a necessary condition for sustaining the fusion reactions, which involve the combination of atomic nuclei, leading to the release of vast amounts of energy.

References

Citations

  1. "Arthur R. Kantrowitz". Memorial Tributes Volume 16. National Academy of Engineering. 2012. doi:10.17226/13338. ISBN   978-0-309-25280-5.
  2. Oliphant, M. L. E.; Kempton, A. R.; Rutherford, Lord (1 April 1935). "The Accurate Determination of the Energy Released in Certain Nuclear Transformations". Proceedings of the Royal Society A. 149 (867): 406–416. Bibcode:1935RSPSA.149..406O. doi:10.1098/rspa.1935.0071.
  3. 1 2 3 Hansen 1992, p. 1.
  4. "The Nobel Prize in Physics 1967".
  5. 1 2 3 4 5 6 7 Hansen 1992, p. 2.
  6. 1 2 Hansen 1992, p. 3.
  7. Hansen 1992, p. 4.
  8. Dudson, Ben (24 January 2014). Toroidal confinement devices (PDF) (Technical report). p. 5.

Bibliography