Euarchontoglires

Last updated

Euarchontoglires
Temporal range: Paleocene–Present
Euarchontoglires 1.jpg
From top to bottom (left): rat, treeshrew, colugo; (right) hare, macaque with human.
Scientific classification OOjs UI icon edit-ltr.svg
Kingdom: Animalia
Phylum: Chordata
Class: Mammalia
Magnorder: Boreoeutheria
Superorder: Euarchontoglires
Murphy et al., 2001 [1]
Subgroups

Euarchontoglires (from Euarchonta 'true rulers' + Glires 'dormice'), synonymous with Supraprimates, is a clade and a superorder of placental mammals, the living members of which belong to one of the five following groups: rodents, lagomorphs, treeshrews, primates, and colugos.

Contents

Evolutionary affinities within mammals

Phylogenetic position of living Euarchontoglires (in blue) among placentals in a genus-level molecular phylogeny of 116 extant mammals inferred from the gene tree information of 14,509 coding DNA sequences. The other major clades are colored: marsupials (magenta), xenarthrans (orange), afrotherians (red), and laurasiatherians (green). OrthoMaM v10b 2019 116genera circular tree.svg
Phylogenetic position of living Euarchontoglires (in blue) among placentals in a genus-level molecular phylogeny of 116 extant mammals inferred from the gene tree information of 14,509 coding DNA sequences. The other major clades are colored: marsupials (magenta), xenarthrans (orange), afrotherians (red), and laurasiatherians (green).

The Euarchontoglires clade is based on DNA sequence analyses and retrotransposon markers that combine the clades Glires (Rodentia + Lagomorpha) and Euarchonta (Scandentia + Primates + Dermoptera). [1] It is usually discussed without a taxonomic rank but has been called a cohort, magnorder, or superorder. Relations among the four cohorts (Euarchontoglires, Xenarthra, Laurasiatheria, Afrotheria) and the identity of the placental root remain controversial. [4] [5]

So far, few, if any, distinctive anatomical features have been recognized that support Euarchontoglires; nor does any strong evidence from anatomy support alternative hypotheses.[ citation needed ] Although both Euarchontoglires and diprotodont marsupials are documented to possess a vermiform appendix, this feature evolved as a result of convergent evolution. [6]

Euarchontoglires probably split from the Boreoeutheria magnorder about 85 to 95 million years ago, during the Cretaceous, and developed in the Laurasian island group that would later become Europe.[ citation needed ] This hypothesis is supported by molecular evidence; so far, the earliest known fossils date to the early Paleocene. [7] The combined clade of Euarchontoglires and Laurasiatheria is recognized as Boreoeutheria. [8]

Phylogenetic relationships within the clade

The hypothesized relationship among the Euarchontoglires is as follows: [9]

Boreoeutheria

One study based on DNA analysis suggests that Scandentia and Primates are sister clades, but does not discuss the position of Dermoptera. [10] Although it is known that Scandentia is one of the most basal Euarchontoglires clades, the exact phylogenetic position is not yet considered resolved, and it may be a sister of Glires, Primatomorpha or Dermoptera or to all other Euarchontoglires. [11] [5] [12] Some old studies place Scandentia as sister of the Glires, invalidating Euarchonta. [13] [14]

References

  1. 1 2 Murphy, William J.; Eizirik, Eduardo; O'Brien, Stephen J.; Madsen, Ole; Scally, Mark; Douady, Christophe J.; Teeling, Emma; Ryder, Oliver A.; Stanhope, Michael J.; de Jong, Wilfried W.; Springer, Mark S. (2001). "Resolution of the early placental mammal radiation using Bayesian phylogenetics". Science . 294 (5550): 2348–2351. Bibcode:2001Sci...294.2348M. doi:10.1126/science.1067179. PMID   11743200. S2CID   34367609.
  2. Missiaen P, Smith T, Guo DY, Bloch JI, Gingerich PD (2006). "Asian gliriform origin for arctostylopid mammals" . Naturwissenschaften. 93 (8): 407–411. Bibcode:2006NW.....93..407M. doi:10.1007/s00114-006-0122-1. hdl: 1854/LU-353125 . PMID   16865388. S2CID   23315598.
  3. Scornavacca C, Belkhir K, Lopez J, Dernat R, Delsuc F, Douzery EJ, Ranwez V (April 2019). "OrthoMaM v10: Scaling-up orthologous coding sequence and exon alignments with more than one hundred mammalian genomes". Molecular Biology and Evolution. 36 (4): 861–862. doi:10.1093/molbev/msz015. PMC   6445298 . PMID   30698751.
  4. Asher, RJ; Bennett, N; Lehmann, T (2009). "The new framework for understanding placental mammal evolution". BioEssays. 31 (8): 853–864. doi: 10.1002/bies.200900053 . PMID   19582725.
  5. 1 2 Kumar, Vikas; Hallström, Björn M.; Janke, Axel (2013-04-01). "Coalescent-Based Genome Analyses Resolve the Early Branches of the Euarchontoglires". PLOS ONE. 8 (4) e60019. Bibcode:2013PLoSO...860019K. doi: 10.1371/journal.pone.0060019 . ISSN   1932-6203. PMC   3613385 . PMID   23560065.
  6. Smith, H. F.; Fisher, R. E.; Everett, M. L.; Thomas, A. D.; Randal-Bollinger, R.; Parker, W. (October 2009). "Comparative anatomy and phylogenetic distribution of the mammalian cecal appendix". Journal of Evolutionary Biology . 22 (10): 1984–1999. doi: 10.1111/j.1420-9101.2009.01809.x . PMID   19678866.
  7. O'Leary, M. A.; Bloch, J. I.; Flynn, J. J.; Gaudin, T. J.; Giallombardo, A.; Giannini, N. P.; Cirranello, A. L. (2013). "The placental mammal ancestor and the post–K-Pg radiation of placentals". Science. 339 (6120): 662–667. Bibcode:2013Sci...339..662O. doi:10.1126/science.1229237. hdl: 11336/7302 . PMID   23393258. S2CID   206544776.
  8. Scally M, Madsen O, Douady CJ, de Jong WW, Stanhope MJ, Springer MS (2001). "Molecular evidence for the major clades of placental mammals". Journal of Mammalian Evolution. 8 (4): 239–277. doi:10.1023/A:1014446915393. S2CID   24199924.
  9. Esselstyn, Jacob A.; Oliveros, Carl H.; Swanson, Mark T.; Faircloth, Brant C. (2017-08-26). "Investigating Difficult Nodes in the Placental Mammal Tree with Expanded Taxon Sampling and Thousands of Ultraconserved Elements". Genome Biology and Evolution. 9 (9): 2308–2321. doi:10.1093/gbe/evx168. PMC   5604124 . PMID   28934378.
  10. Song S, Liu L, Edwards SV, Wu S (2012). "Resolving conflict in eutherian mammal phylogeny using phylogenomics and the multispecies coalescent model". Proceedings of the National Academy of Sciences. 109 (37): 14942–7. Bibcode:2012PNAS..10914942S. doi: 10.1073/pnas.1211733109 . PMC   3443116 . PMID   22930817.
  11. Foley, Nicole M.; Springer, Mark S.; Teeling, Emma C. (2016-07-19). "Mammal madness: Is the mammal tree of life not yet resolved?". Philosophical Transactions of the Royal Society B. 371 (1699) 20150140. doi:10.1098/rstb.2015.0140. ISSN   0962-8436. PMC   4920340 . PMID   27325836.
  12. Zhou, Xuming; Sun, Fengming; Xu, Shixia; Yang, Guang; Li, Ming (2015-03-01). "The position of tree shrews in the mammalian tree: Comparing multi-gene analyses with phylogenomic results leaves monophyly of Euarchonta doubtful". Integrative Zoology. 10 (2): 186–198. doi:10.1111/1749-4877.12116. ISSN   1749-4877. PMID   25311886.
  13. Meredith, Robert W.; Janečka, Jan E.; Gatesy, John; Ryder, Oliver A.; Fisher, Colleen A.; Teeling, Emma C.; Goodbla, Alisha; Eizirik, Eduardo; Simão, Taiz L. L. (2011-10-28). "Impacts of the Cretaceous terrestrial revolution and KPg extinction on mammal diversification". Science. 334 (6055): 521–524. Bibcode:2011Sci...334..521M. doi:10.1126/science.1211028. ISSN   0036-8075. PMID   21940861. S2CID   38120449.
  14. Zhou, Xuming; Sun, Fengming; Xu, Shixia; Yang, Guang; Li, Ming (2015-03-01). "The position of tree shrews in the mammalian tree: Comparing multi-gene analyses with phylogenomic results leaves monophyly of Euarchonta doubtful". Integrative Zoology. 10 (2): 186–198. doi:10.1111/1749-4877.12116. ISSN   1749-4877. PMID   25311886.

Further reading