Exchange operator

Last updated

In quantum mechanics, the exchange operator, also known as permutation operator, [1] is a quantum mechanical operator that acts on states in Fock space. The exchange operator acts by switching the labels on any two identical particles described by the joint position quantum state . [2] Since the particles are identical, the notion of exchange symmetry requires that the exchange operator be unitary.

Contents

Construction

Particle exchange 2d anticlockwise.gif
Anticlockwise rotation
Particle exchange 2d clockwise.gif
Clockwise rotation
Exchange of two particles in 2 + 1 spacetime by rotation. The rotations are inequivalent, since one cannot be deformed into the other (without the worldlines leaving the plane, an impossibility in 2d space).

In three or higher dimensions, the exchange operator can represent a literal exchange of the positions of the pair of particles by motion of the particles in an adiabatic process, with all other particles held fixed. Such motion is often not carried out in practice. Rather, the operation is treated as a "what if" similar to a parity inversion or time reversal operation. Consider two repeated operations of such a particle exchange:

Therefore, is not only unitary but also an operator square root of 1, which leaves the possibilities

Both signs are realized in nature. Particles satisfying the case of +1 are called bosons , and particles satisfying the case of −1 are called fermions . The spin–statistics theorem dictates that all particles with integer spin are bosons whereas all particles with half-integer spin are fermions.

The exchange operator commutes with the Hamiltonian and is therefore a conserved quantity. Therefore, it is always possible and usually most convenient to choose a basis in which the states are eigenstates of the exchange operator. Such a state is either completely symmetric under exchange of all identical bosons or completely antisymmetric under exchange of all identical fermions of the system. To do so for fermions, for example, the antisymmetrizer builds such a completely antisymmetric state.

In 2 dimensions, the adiabatic exchange of particles is not necessarily possible. Instead, the eigenvalues of the exchange operator may be complex phase factors (in which case is not Hermitian), see anyon for this case. The exchange operator is not well defined in a strictly 1-dimensional system, though there are constructions of 1-dimensional networks that behave as effective 2-dimensional systems.

Quantum chemistry

A modified exchange operator is defined in the Hartree–Fock method of quantum chemistry, in order to estimate the exchange energy arising from the exchange statistics described above. In this method, one often defines an energetic exchange operator as:

where is the one-electron exchange operator, and , are the one-electron wavefunctions acted upon by the exchange operator as functions of the electron positions, and and are the one-electron wavefunction of the -th electron as functions of the positions of the electrons. Their separation is denoted . [3] The labels 1 and 2 are only for a notational convenience, since physically there is no way to keep track of "which electron is which".

See also

Related Research Articles

<span class="mw-page-title-main">Antiparticle</span> Particle with opposite charges

In particle physics, every type of particle of "ordinary" matter is associated with an antiparticle with the same mass but with opposite physical charges. For example, the antiparticle of the electron is the positron. While the electron has a negative electric charge, the positron has a positive electric charge, and is produced naturally in certain types of radioactive decay. The opposite is also true: the antiparticle of the positron is the electron.

In quantum mechanics, indistinguishable particles are particles that cannot be distinguished from one another, even in principle. Species of identical particles include, but are not limited to, elementary particles, composite subatomic particles, as well as atoms and molecules. Quasiparticles also behave in this way. Although all known indistinguishable particles only exist at the quantum scale, there is no exhaustive list of all possible sorts of particles nor a clear-cut limit of applicability, as explored in quantum statistics. They were first discussed by Werner Heisenberg and Paul Dirac in 1926.

<span class="mw-page-title-main">Pauli exclusion principle</span> Quantum mechanics rule: identical fermions cannot occupy the same quantum state simultaneously

In quantum mechanics, the Pauli exclusion principle states that two or more identical particles with half-integer spins cannot simultaneously occupy the same quantum state within a system that obeys the laws of quantum mechanics. This principle was formulated by Austrian physicist Wolfgang Pauli in 1925 for electrons, and later extended to all fermions with his spin–statistics theorem of 1940.

<span class="mw-page-title-main">Quantum field theory</span> Theoretical framework

In theoretical physics, quantum field theory (QFT) is a theoretical framework that combines classical field theory, special relativity, and quantum mechanics. QFT is used in particle physics to construct physical models of subatomic particles and in condensed matter physics to construct models of quasiparticles. The current standard model of particle physics is based on quantum field theory.

The Fock space is an algebraic construction used in quantum mechanics to construct the quantum states space of a variable or unknown number of identical particles from a single particle Hilbert space H. It is named after V. A. Fock who first introduced it in his 1932 paper "Konfigurationsraum und zweite Quantelung".

In quantum mechanics, a Fock state or number state is a quantum state that is an element of a Fock space with a well-defined number of particles. These states are named after the Soviet physicist Vladimir Fock. Fock states play an important role in the second quantization formulation of quantum mechanics.

The spin–statistics theorem proves that the observed relationship between the intrinsic spin of a particle and the quantum particle statistics of collections of such particles is a consequence of the mathematics of quantum mechanics. In units of the reduced Planck constant ħ, all particles that move in 3 dimensions have either integer spin and obey Bose-Einstein statistics or half-integer spin and obey Fermi-Dirac statistics.

<span class="mw-page-title-main">Second quantization</span> Formulation of the quantum many-body problem

Second quantization, also referred to as occupation number representation, is a formalism used to describe and analyze quantum many-body systems. In quantum field theory, it is known as canonical quantization, in which the fields are thought of as field operators, in a manner similar to how the physical quantities are thought of as operators in first quantization. The key ideas of this method were introduced in 1927 by Paul Dirac, and were later developed, most notably, by Pascual Jordan and Vladimir Fock. In this approach, the quantum many-body states are represented in the Fock state basis, which are constructed by filling up each single-particle state with a certain number of identical particles. The second quantization formalism introduces the creation and annihilation operators to construct and handle the Fock states, providing useful tools to the study of the quantum many-body theory.

In computational physics and chemistry, the Hartree–Fock (HF) method is a method of approximation for the determination of the wave function and the energy of a quantum many-body system in a stationary state.

In quantum mechanics, a Slater determinant is an expression that describes the wave function of a multi-fermionic system. It satisfies anti-symmetry requirements, and consequently the Pauli principle, by changing sign upon exchange of two electrons. Only a small subset of all possible fermionic wave functions can be written as a single Slater determinant, but those form an important and useful subset because of their simplicity.

<span class="mw-page-title-main">Canonical quantization</span> Process of converting a classical physical theory into one compatible with quantum mechanics

In physics, canonical quantization is a procedure for quantizing a classical theory, while attempting to preserve the formal structure, such as symmetries, of the classical theory to the greatest extent possible.

In quantum field theory a product of quantum fields, or equivalently their creation and annihilation operators, is usually said to be normal ordered when all creation operators are to the left of all annihilation operators in the product. The process of putting a product into normal order is called normal ordering. The terms antinormal order and antinormal ordering are analogously defined, where the annihilation operators are placed to the left of the creation operators.

In physics, a parity transformation is the flip in the sign of one spatial coordinate. In three dimensions, it can also refer to the simultaneous flip in the sign of all three spatial coordinates :

Møller–Plesset perturbation theory (MP) is one of several quantum chemistry post-Hartree–Fock ab initio methods in the field of computational chemistry. It improves on the Hartree–Fock method by adding electron correlation effects by means of Rayleigh–Schrödinger perturbation theory (RS-PT), usually to second (MP2), third (MP3) or fourth (MP4) order. Its main idea was published as early as 1934 by Christian Møller and Milton S. Plesset.

In mathematical physics, some approaches to quantum field theory are more popular than others. For historical reasons, the Schrödinger representation is less favored than Fock space methods. In the early days of quantum field theory, maintaining symmetries such as Lorentz invariance, displaying them manifestly, and proving renormalisation were of paramount importance. The Schrödinger representation is not manifestly Lorentz invariant and its renormalisability was only shown as recently as the 1980s by Kurt Symanzik (1981).

In chemistry and physics, the exchange interaction is a quantum mechanical constraint on the states of indistinguishable particles. While sometimes called an exchange force, or, in the case of fermions, Pauli repulsion, its consequences cannot always be predicted based on classical ideas of force. Both bosons and fermions can experience the exchange interaction.

In mathematical physics, the primon gas or Riemann gas discovered by Bernard Julia is a model illustrating correspondences between number theory and methods in quantum field theory, statistical mechanics and dynamical systems such as the Lee-Yang theorem. It is a quantum field theory of a set of non-interacting particles, the primons; it is called a gas or a free model because the particles are non-interacting. The idea of the primon gas was independently discovered by Donald Spector. Later works by Ioannis Bakas and Mark Bowick, and Spector explored the connection of such systems to string theory.

In quantum mechanics, a raising or lowering operator is an operator that increases or decreases the eigenvalue of another operator. In quantum mechanics, the raising operator is sometimes called the creation operator, and the lowering operator the annihilation operator. Well-known applications of ladder operators in quantum mechanics are in the formalisms of the quantum harmonic oscillator and angular momentum.

In 1927, a year after the publication of the Schrödinger equation, Hartree formulated what are now known as the Hartree equations for atoms, using the concept of self-consistency that Lindsay had introduced in his study of many electron systems in the context of Bohr theory. Hartree assumed that the nucleus together with the electrons formed a spherically symmetric field. The charge distribution of each electron was the solution of the Schrödinger equation for an electron in a potential , derived from the field. Self-consistency required that the final field, computed from the solutions, was self-consistent with the initial field, and he thus called his method the self-consistent field method.

Within computational chemistry, the Slater–Condon rules express integrals of one- and two-body operators over wavefunctions constructed as Slater determinants of orthonormal orbitals in terms of the individual orbitals. In doing so, the original integrals involving N-electron wavefunctions are reduced to sums over integrals involving at most two molecular orbitals, or in other words, the original 3N dimensional integral is expressed in terms of many three- and six-dimensional integrals.

References

  1. Levine, I.N., Quantum Chemistry (4th ed., Prentice Hall 1991) p.262. ISBN   0-205-12770-3
  2. J.S. Townsend (2000). A modern approach to quantum mechanics. International series in pure and applied physics. Vol. 69 (2 ed.). University Science Books. p. 342. ISBN   978-1891389139.
  3. Levine, I.N., Quantum Chemistry (4th ed., Prentice Hall 1991) p.403. ISBN   0-205-12770-3