Hensen's cells

Last updated
Hensens' cells
Organ of corti.svg
Schematic anatomy of the Organ of Corti, the Hensen's cells form part of the outer hair cells.
Details
System Supporting system
Anatomical terminology

Hensen's cells are a layer of tall cells arranged in the organ of Corti in the cochlea, which are part of the supporting cells lie on the outer hair cells (OHC). [1] [2] [3] Their appearance are upper part wide with lower part narrow, column like cells. One significant morphologic feature of Hensen's cells is the lipid droplets, which are most noticeable at the third and forth turns of the cochlear, the lipid droplets are thought to have association with the auditory process because they are parallel to the innervation. [4] One significant structure found among the Hensen's cells and the hair cells are the gap junctions, they are made of connexins which serve important function in distribution and connection between cells, the gaps enable the long distance of electric communication.

Contents

There are increased evidence which show that Hensen's cells are critical in many functions, they act as mediators of ion metabolism, the K+ spatial buffering pathway, the neuron innervation, and the purinergic receptors that found in the Hensen's cells are all important in providing a suitable electrical and micro mechanical environment to support hair cells and to maintain homeostasis of the Organ of Corti. [5] [6] Furthermore, Hensen's cells are also able to regenerate the damaged hair cells in the vertebrates, they undergo phagocytosis to eject the dead or injured hair cells, and reproduce both new hair cells and supporting cells into the cell cycle, one of the reasons is because the supporting cells are differentiated by the embryonic hair cells, but why the regeneration function is not found in the mammals cells are remain unclear. In addition to the regeneration of new hair cells, Hensen's cells are currently being investigated to be promising targets for gene therapy and regenerative medicine. [7]

Hensen's cells are named after German anatomist and physiologist, Hensen Victor (1835-1924).

Location

Hensen's cells are one of the supporting cells found in the cochlea, and are located on the third row outer hair cells in the Organ of Corti. [3] [4]

Structure

The shape of Hensen's cells are various in different position of cochlea, they appear as a single layer of cells in the basal coil while appear as cuboidal form in the apical surface. [3] They contain nuclei and microvilli but are limiting of plasma membrane, they are also lack of endoplasmic reticulum and have few mitochondria. [4] In the apical surface, there are free enlarged poles found in the Hensen's cells, the cytoplasm of the cells is a little more dense in the apical surface than the cells in the basal coil. The enlarged poles in the cells which nearly fill the cytoplasm are lipid droplets, which are noticeable at the third and forth turns of the cochlea, the lipid droplets are thought to have relation with auditory process. [3] The phagosomes found in the cells are another characteristic of the Hensen's cells, indicating that they have a function of phagocytosis. [4] Hensen's cells have rigid cytoskeletons which are responsible to maintain the structure of the organ of Corti during sound exposure. [7]

There are gap junctions among supporting cells and also between supporting cells and hair cells, the gap junctions are made of connexins which are three times denser in the apex than the base. The gap junctions play an important role in regulating the concentration of intracellular K+ between the endolymph and the perilymph, maintaining pH homeostasis, and increasing movement of the ions between cells. [4] [5] The mutations in connexin 26, which is an important gap junction protein found in the organ of Corti, would results in severe hearing loss and is one of the most common inherited nonsyndromic deafness. [8]

There are nerve fibres and terminals innervation in the Hensen's cells, these nerve fibers are chemical synapses which located on the supranuclear region of the outer hair, and are more common in the apical surface than the basal of the cochlea. [4] The terminals, on the other hand, are more common in the basal of the cochlea, and contain mitochondria, Golgi apparatus and dense core vesicles. [9] The innervation of the supporting cells were shown by the finding of synaptophysin-immunostained terminals in the guinea pigs and rats. [9]

The structural change after sound exposure in the Hensen's cells were observed by laser scanning confocal microscopy (LSCM), it showed that after sound exposure, the Hensen's cells moved towed the tunnel of Corti, most of the movement were found in the third row of outer hair cells around with outer part rotates, furthermore, the movement often accompanied with the tilting of the reticular lamina located on the first row of the outer hair cells. When there is no exposure to sound, the displacement is reversed, no residual structural alterations were observed. [10]

Function

There are increased evidence indicating that supporting cells serve many critical functions within the Organ of Corti, they may mediate the initiation of hearing activate during cochlea development. [11] Hensen's cells are important in ion metabolism and homeostasis regulation of both endolymph and perilymph, modulation of the hearing sensitivity, regulation and regeneration of the hair cells, and prevention of the cochlea damage. [6] The outer hair cells of the cochlea preprocess the signal by active movements, which can be elevated by electrical or chemical stimulation. [12]

Gap junction

The supporting cells including Hensen's cells and Deiter's cells which surround the sensory cells in the organ of Corti are joined by gap junctions, the gap junctions function as electrical and metabolic communication from cell to cell through a long distance. [13] The gap junctions could be visualized by the dye coupling, but is only visible between the Hensen's cells and the Deiter's cells by means of fluorescein of 6-carboxy-fluo-rescein. The same results were obtained by using Lucifer yellow due to its precipitation in the potassium rich cytoplasm. [14] Gentamycin, which is an antibiotic, would induce production of oxygen free radical and suppress the cell coupling up to 90%. Other chemicals such as Calmodulin antagonists W7 and trifluoperazine (TFP) could also induce the gap junctions uncoupling. Because of the distributing and connecting function of the gap junctions, they serve as syncytium in the organ of Corti and are involved in adjusting function in the cochlea. [4] Another way to observe the gap junctions is using ionic coupling, this method was came up by the observation that the intracellular membrane potentials of the Hensen's cells are almost always larger than in the intercellular space, which is larger than the outer tunnel of Corti. Since the Hensen's cells are separated from the outer hair cells, the signaling pathway would expressed by ionic coupling. It is said that the alternating potentials in the Hensen's cells which exceed the intercellular space membrane potentials are important for the existence of the gap junctions. [14]

Ion homeostasis

ATP can induce potassium current on Hensen's cells and also elevate the concentration of cytoplasmic calcium in both the inner and outer hair cells. Under negative potential condition, ATP is able to activate a biphasic current which increased the concentration of calcium in the Hensen's cells, following by a reversal potential which induced another current that was carried by chloride. [4] When ATP induced an increase in cytoplasmic calcium, membrane becomes depolarized and the outer hair cells are contracted. [12]

Purinergic receptors have been found in the cells of the Organ of Corti, which are able to mediate physiological and pathophysiological actions. There are various types of purinergic receptors, the most common expressed in the Hensen's cells is the P2 subtype. [6] Another metabotropic P2Y receptor subtypes are also expressed in the cochlea, P2Y1, P2Y2, P2Y4, and P2Y6 are found in the Hensen's cells. [6] The P2X is ionotropic and P2Y is metabotropic, which have different functions at different sites in the organ of Corti, for example, P2X2 receptor subunits are able to mediate ATP-induced reduction in endo cochlear potential, which are responsible for the protection of the cochlear when responding to loud noise. [2] After the noise exposure, the ATP levels elevated and change the K+ conductance through the P2X receptors by reducing the endo cochlear potential (EP). As a result, the purinergic signaling mechanism act as a regulation of homeostasis which decrease the cochlear sensitivity to noise exposure, loss function of the purinergic receptors expressed in the Hensen's cells in the cochlea may lead to noise-induced hearing loss (NIHL). NIHL could also happen if there is elevated Ca2+ concentration in the cochlea. The ionized calcium plays a critical role in many functions, such as cell proliferation, differentiation, and cell apoptosis, there are several factors that cause the increased concentration in the cochlea, including continuous exposure to noise which lead to overstimulation, thus maintaining homeostasis of the Ca2+ concentration is important. [5]

Many studies showed that the Hensen's cells have a resting potential ranging from -60 to -100 mV, as a result, the homeostasis of K+ concentration is important in maintaining the resting potential of the Hensen's cells. A high concentration of K+ would lead to depolarization of Hensen's cells and maintain a high level of endo cochlear potential, and the change in endo cochlear potential could lead to hearing loss. Since there are abundant ATP receptors found on the membrane of Hensen's cells, the extracellular ATP flow into the cells would have significant dose-dependent suppressive effect on the EP, ATP modulate the flow of K+ and thus maintain the homeostasis of K+. [5] When exposing to sound, the K+ concentration would decrease in the endolymph while the concentration is increase in the space of Nuel which surround the hair cells, the transportation of the K+ indicates the transduction between the supporting cells and the hair cells, and the supporting cells are associated with the K+ buffering in the cochlea, the K+ buffering is usually mediated by glial cells in the nervous system. [13]

Cell regeneration

When the hair cells undergo apoptosis, the surrounding supporting cells would eject the injured hair cells out of the epithelium or by phagocytosis, and regenerate both new hair cells and supporting cells in vertebrates. [15] however, studies found that humans and other mammals are unable to replace the damaged hair cells, the loss of hair cells could lead to permanent deafness. [16] In addition to hair cell regeneration, supporting cells also act as mediators to hair cell survival. [11] When under heat stress condition, the supporting cells could express heat shock protein 70 (HSP70) which is not up regulate in hair cells. Therefore, supporting cells could act as determinants of whether the hair cells be dead or alive. The supporting cells capacity to form new hair cells change at different time, it is most abundant in the embryonic Organ of Corti, and substantially decreased when maturing. [7] The supporting cells are differentiated from the hair cells, when early embryonic hair cells express ligands that bind to the Notch receptors would prevent them from obtaining the hair cell phenotype, and these cells would differentiate into supporting cells, this is one of the reasons that the supporting cells are able to regenerate new hair cells. [8]

The regeneration of hair cells by supporting cells in the vertebrates were proved by the expression of green fluorescent protein (GFP) found in the neonatal cochlear in mice. To test the capacity of supporting cells to generate hair cells in different stages, analyzing the p27–gfp transgenic organ of Corti from mice, the transgenic expression confirmed high level of Hensen's cells marker expression. It is found that greater than 80% of regeneration of hair cells from supporting cells were activated between embryonic 13 and 14, than rapid decrease after this stage. [15] [17] There are two types of cadherins found in the reproduction of the hair cells in the birds, one is N-cadherin and the other is E-cadherin, the expression of E-cadherins are found among supporting cells, which indicates that the interactions between two supporting cells will be mediated by the E-cadherins, and some of the N-cadherins as well, while N-cadherins alone are found in the interactions between supporting cells and the hair cells. Studies also found that the N-cadherins are associated with the supporting cells proliferation, meaning that the malfunction of the N-cadherins, which often causes hair cells loss or injury, would lead to the regeneration of hair cells by the activation of the supporting cells. [8]

Related Research Articles

Inner ear innermost part of the vertebrate ear

The inner ear is the innermost part of the vertebrate ear. In vertebrates, the inner ear is mainly responsible for sound detection and balance. In mammals, it consists of the bony labyrinth, a hollow cavity in the temporal bone of the skull with a system of passages comprising two main functional parts:

Cochlea organ of the inner ear

The cochlea is the part of the inner ear involved in hearing. It is a spiral-shaped cavity in the bony labyrinth, in humans making 2.75 turns around its axis, the modiolus. A core component of the cochlea is the Organ of Corti, the sensory organ of hearing, which is distributed along the partition separating the fluid chambers in the coiled tapered tube of the cochlea.

Vestibulocochlear nerve

The vestibulocochlear nerve, known as the eighth cranial nerve, transmits sound and equilibrium (balance) information from the inner ear to the brain. Through olivocochlear fibers, this nerve also transmit motor and modulatory information from the superior olivary complex in the brainstem to the cochlea.

Basilar membrane

The basilar membrane is a stiff structural element within the cochlea of the inner ear which separates two liquid-filled tubes that run along the coil of the cochlea, the scala media and the scala tympani. The basilar membrane moves up and down in response to incoming sound waves, which are converted to traveling waves on the basilar membrane.

Organ of Corti Receptor organ for hearing

The organ of Corti, or spiral organ, is the receptor organ for hearing and is located in the mammalian cochlea. This highly varied strip of epithelial cells allows for transduction of auditory signals into nerve impulses' action potential. Transduction occurs through vibrations of structures in the inner ear causing displacement of cochlear fluid and movement of hair cells at the organ of Corti to produce electrochemical signals.

Auditory system particularly in the context of auditory processing disorder

The auditory system is the sensory system for the sense of hearing. It includes both the sensory organs and the auditory parts of the sensory system.

Hair cell auditory nerve cells

Hair cells are the sensory receptors of both the auditory system and the vestibular system in the ears of all vertebrates, and in the lateral line organ of fishes. Through mechanotransduction, hair cells detect movement in their environment.

Endolymph inner ear fluid

Endolymph is the fluid contained in the membranous labyrinth of the inner ear. The major cation in endolymph is potassium, with the values of sodium and potassium concentration in the endolymph being 0.91 mM and 154 mM, respectively. It is also called Scarpa's fluid, after Antonio Scarpa.

Presbycusis, or age-related hearing loss, is the cumulative effect of aging on hearing. It is a progressive and irreversible bilateral symmetrical age-related sensorineural hearing loss resulting from degeneration of the cochlea or associated structures of the inner ear or auditory nerves. The hearing loss is most marked at higher frequencies. Hearing loss that accumulates with age but is caused by factors other than normal aging is not presbycusis, although differentiating the individual effects of distinct causes of hearing loss can be difficult.

Perilymph Extracellular fluid located within the inner ear

Perilymph is an extracellular fluid located within the inner ear. It is found within the scala tympani and scala vestibuli of the cochlea. The ionic composition of perilymph is comparable to that of plasma and cerebrospinal fluid. The major cation in perilymph is sodium, with the values of sodium and potassium concentration in the perilymph being 138 mM and 6.9 mM, respectively. It is also named Cotunnius' liquid and liquor cotunnii for Domenico Cotugno.

Cochlear nerve

The cochlear nerve is one of two parts of the vestibulocochlear nerve, a cranial nerve present in amniotes, the other part being the vestibular nerve. The cochlear nerve carries auditory sensory information from the cochlea of the inner ear directly to the brain. The other portion of the vestibulocochlear nerve is the vestibular nerve, which carries spatial orientation information to the brain from the semicircular canals, also known as semicircular ducts.

Tectorial membrane membrane in the cochlea of the inner ear

The tectorial membrane (TM) is one of two acellular membranes in the cochlea of the inner ear, the other being the basilar membrane (BM). "Tectorial" in anatomy means forming a cover. The TM is located above the spiral limbus and the spiral organ of Corti and extends along the longitudinal length of the cochlea parallel to the BM. Radially the TM is divided into three zones, the limbal, middle and marginal zones. Of these the limbal zone is the thinnest (transversally) and overlies the auditory teeth of Huschke with its inside edge attached to the spiral limbus. The marginal zone is the thickest (transversally) and is divided from the middle zone by Hensen's Stripe. It overlies the sensory inner hair cells and electrically-motile outer hair cells of the organ of Corti and during acoustic stimulation stimulates the inner hair cells through fluid coupling, and the outer hair cells via direct connection to their tallest stereocilia.

GJB6 protein-coding gene in the species Homo sapiens

Gap junction beta-6 protein (GJB6), also known as connexin 30 (Cx30) — is a protein that in humans is encoded by the GJB6 gene. Connexin 30 (Cx30) is one of several gap junction proteins expressed in the inner ear. Mutations in gap junction genes have been found to lead to both syndromic and nonsyndromic deafness. Mutations in this gene are associated with Clouston syndrome.

The olivocochlear system is a component of the auditory system involved with the descending control of the cochlea. Its nerve fibres, the olivocochlear bundle (OCB), form part of the vestibulocochlear nerve, and project from the superior olivary complex in the brainstem (pons) to the cochlea.

The cochlear amplifier is a positive feedback mechanism within the cochlea that provides acute sensitivity in the mammalian auditory system. The main component of the cochlear amplifier is the outer hair cell (OHC) which increases the amplitude and frequency selectivity of sound vibrations using electromechanical feedback.

The neuronal encoding of sound is the representation of auditory sensation and perception in the nervous system.

Claudius cells are considered as supporting cells within the organ of Corti in the cochlea. These cells extend from Hensen's cells to the spiral prominence epithelium, forming the outer sulcus. They are in direct contact with the endolymph of the cochlear duct. These cells are sealed via tight junctions that prevent flow of endolymph between them. Boettcher cells are located immediately under Claudius cells in the lower turn of the cochlea.

Auditory fatigue is defined as a temporary loss of hearing after exposure to sound. This results in a temporary shift of the auditory threshold known as a temporary threshold shift (TTS). The damage can become permanent if sufficient recovery time is not allowed before continued sound exposure. When the hearing loss is rooted from a traumatic occurrence, it may be classified as noise-induced hearing loss, or NIHL.

Cochlea is Latin for “snail, shell or screw” and originates from the Greek word κοχλίας kokhlias. The modern definition, the auditory portion of the inner ear, originated in the late 17th century. Within the mammalian cochlea exists the organ of Corti, which contains hair cells that are responsible for translating the vibrations it receives from surrounding fluid-filled ducts into electrical impulses that are sent to the brain to process sound.

IDPN (chemical) chemical compound

IDPN (3,3'-iminodipropanenitrile) is a neurotoxin with ototoxic and hepatotoxic effects. It causes irreversible movement disorder.

References

  1. Defourny J, Mateo Sánchez S, Schoonaert L, Robberecht W, Davy A, Nguyen L, Malgrange B (April 2015). "Cochlear supporting cell transdifferentiation and integration into hair cell layers by inhibition of ephrin-B2 signalling". Nature Communications. Nature. 6: 7017. Bibcode:2015NatCo...6.7017D. doi: 10.1038/ncomms8017 . PMID   25923646.
  2. 1 2 Lagostena L, Ashmore JF, Kachar B, Mammano F (March 2001). "Purinergic control of intercellular communication between Hensen's cells of the guinea-pig cochlea". The Journal of Physiology. United States: Wiley-Blackwell. 531 (Pt 3): 693–706. doi:10.1111/j.1469-7793.2001.0693h.x. PMC   2278490 . PMID   11251051.
  3. 1 2 3 4 Merchan MA, Merchan JA, Ludeña MD (October 1980). "Morphology of Hensen's cells". Journal of Anatomy. 131 (Pt 3): 519–23. PMC   1233249 . PMID   6260724.
  4. 1 2 3 4 5 6 7 8 Li-dong Z, Jun L, Yin-yan H, Jian-he S, Shi-ming Y (2008). "Supporting Cells–a New Area in Cochlear Physiology Study". Journal of Otology. 3 (1): 9–17. doi: 10.1016/S1672-2930(08)50002-X .
  5. 1 2 3 4 Ye R, Liu J, Jia Z, Wang H, Wang Y, Sun W, Wu X, Zhao Z, Niu B, Li X, Dai G, Li J (June 2016). "Adenosine Triphosphate (ATP) Inhibits Voltage-Sensitive Potassium Currents in Isolated Hensen's Cells and Nifedipine Protects Against Noise-Induced Hearing Loss in Guinea Pigs". Medical Science Monitor. 22: 2006–12. doi:10.12659/MSM.898150. PMC   4913814 . PMID   27292522.
  6. 1 2 3 4 Berekméri E, Szepesy J, Köles L, Zelles T (February 2019). "Purinergic signaling in the organ of Corti: Potential therapeutic targets of sensorineural hearing losses". Brain Research Bulletin. 151: 109–118. doi:10.1016/j.brainresbull.2019.01.029. PMID   30721767.
  7. 1 2 3 Wan G, Corfas G, Stone JS (May 2013). "Inner ear supporting cells: rethinking the silent majority". Seminars in Cell & Developmental Biology. 24 (5): 448–59. doi:10.1016/j.semcdb.2013.03.009. PMC   4005836 . PMID   23545368.
  8. 1 2 3 Warchol, Mark E. (2007-05-01). "Characterization of supporting cell phenotype in the avian inner ear: Implications for sensory regeneration". Hearing Research. Terminal differentiation - A challenge in regeneration. 227 (1): 11–18. doi:10.1016/j.heares.2006.08.014. ISSN   0378-5955. PMID   17081713.
  9. 1 2 Burgess BJ, Adams JC, Nadol JB (June 1997). "Morphologic evidence for innervation of Deiters' and Hensen's cells in the guinea pig". Hearing Research. 108 (1–2): 74–82. doi:10.1016/S0378-5955(97)00040-3. PMID   9213124.
  10. Ulfendahl, Mats; Scarfone, Eric; Fridberger, Anders; Flock, Britta; Flock, Åke (1999-06-01). "Supporting Cells Contribute to Control of Hearing Sensitivity". Journal of Neuroscience. 19 (11): 4498–4507. doi:10.1523/JNEUROSCI.19-11-04498.1999. ISSN   0270-6474. PMC   6782614 . PMID   10341250.
  11. 1 2 Monzack EL, Cunningham LL (September 2013). "Lead roles for supporting actors: critical functions of inner ear supporting cells". Hearing Research. 303: 20–9. doi:10.1016/j.heares.2013.01.008. PMC   3648608 . PMID   23347917.
  12. 1 2 Nilles R, Järlebark L, Zenner HP, Heilbronn E (February 1994). "ATP-induced cytoplasmic [Ca2+] increases in isolated cochlear outer hair cells. Involved receptor and channel mechanisms". Hearing Research. 73 (1): 27–34. doi:10.1016/0378-5955(94)90279-8. PMID   8157503.
  13. 1 2 Mammano, F.; Goodfellow, S. J.; Fountain, E. (1996-01-31). "Electrophysiological properties of Hensen's cells investigated in situ". NeuroReport. 7 (2): 537–542. doi:10.1097/00001756-199601310-00039. ISSN   0959-4965. PMID   8730824.
  14. 1 2 Zwislocki, Jozef J.; Slepecky, Norma B.; Cefaratti, Lisa K.; Smith, Robert L. (1992-01-01). "Ionic coupling among cells in the organ of Corti". Hearing Research. 57 (2): 175–194. doi:10.1016/0378-5955(92)90150-L. ISSN   0378-5955. PMID   1733911.
  15. 1 2 White PM, Doetzlhofer A, Lee YS, Groves AK, Segil N (June 2006). "Mammalian cochlear supporting cells can divide and trans-differentiate into hair cells". Nature. 441 (7096): 984–7. Bibcode:2006Natur.441..984W. doi:10.1038/nature04849. PMID   16791196.
  16. Zheng F, Zuo J (June 2017). "Cochlear hair cell regeneration after noise-induced hearing loss: Does regeneration follow development?". Hearing Research. 349: 182–196. doi:10.1016/j.heares.2016.12.011. PMC   5438754 . PMID   28034617.
  17. Segil, N.; Chen, P. (1999-04-15). "p27(Kip1) links cell proliferation to morphogenesis in the developing organ of Corti". Development. 126 (8): 1581–1590. ISSN   0950-1991. PMID   10079221.