Hyper IgM syndrome

Last updated

Hyper IgM syndrome
IgM scheme.svg
Immunoglobulin M
Specialty Immunology   OOjs UI icon edit-ltr-progressive.svg
Symptoms Chronic diarrhea [1]
TypesHyper-IgM syndrome type 1, 2, 3, 4 and 5 [2] [3] [4] [5] [6]
Diagnostic method MRI, Chest radiography [1]
TreatmentAllogeneic hematopoietic cell transplantation [7]

Hyper IgM syndrome is a rare primary immune deficiency disorders characterized by low or absent levels of serum IgG, IgA, IgE and normal or increased levels of serum IgM. [8]

Contents

They are resulting from mutations in the pathway from B-cell activation to isotype class switching. Patients with HIGM are usually diagnosed within the first two years of life and experience severe immunosuppression. This syndrome is also known as immunoglobulin class switch recombination (Ig-CSR) deficiencies. [9] The most common causes are mutations in the CD40 Ligand (CD40LG) gene located at Xq26.3-27 leading to X-linked HIGM (XHIGM) in males. [10]

Types

Five types of hyper IgM syndrome have been characterized:

Signs and symptoms

The majority of patients with HIGM syndrome present with a broad spectrum of clinical symptoms even with a same genetic defects. [11] They usually develop symptoms in infancy and second year of life, including increased susceptibility to infections by extracellular bacteria, sinus & ear infections, skin infections. Furthermore, these patients are prone to pulmonary complications, gastrointestinal manifestations, autoimmune disorders, hematologic abnormalities, lymphoproloferation and malignancies. Heterozygous females in X-linked hyper IgM syndrome (HIGM1) are usually asymptomatic. However, immunologic testing has revealed that they exhibit reduced expression of CD40L when CD4+ T lymphocytes are activated. In some cases, females with significant reduction in circulating lymphocytes carrying the CD40L mutation due to skewed X-chromosome inactivation can present with symptoms resembling HIGM1 or common variable immunodeficiency. [12] Among the presentation consistent with hyper IgM syndrome are the following: [1] [13]

Pneumocystis pneumonia Pneumocystis.jpg
Pneumocystis pneumonia

Cause

Class switch recombination Class switch recombination.png
Class switch recombination

Different genetic defects cause HIgM syndrome, the vast majority are inherited as an X-linked recessive genetic trait and most with the condition are male. [7]

IgM is the form of antibody that all B cells produce initially before they undergo class switching due to exposure to a recognized antigen. Healthy B cells efficiently switch to other types of antibodies as needed to attack invading bacteria, viruses, and other pathogens. In people with hyper IgM syndromes, the B cells keep making IgM antibodies because they can't switch to a different antibody. This results in an overproduction of IgM antibodies and an underproduction of IgA, IgG, and IgE. [15] [7]

Pathophysiology

CD40 is a co-stimulatory receptor on B cells that, when bound to CD40 ligand (CD40L), sends a signal to the B-cell receptor. [16] Defective interaction of CD40L-CD40 between CD4+ T cells and antigen presenting cells (APCs) is known as the underlying cause of HIGM syndromes. CD40L-CD40 interaction is the first step in B cell stimulation for class switch recombination (CSR) and somatic hyper mutation (SHM) resulting in the generation of various Ig isotypes. [8] Consequently, humoral immune response is affected. Certain insults, usually from encapsulated bacteria and toxin, then have a greater opportunity to damage the body. [1]

Diagnosis

The diagnosis of X-linked hyper IgM syndrome (HIGM1) is established in males with typical clinical and laboratory findings by identifying a hemizygous pathogenic variant in the CD40LG gene through molecular genetic testing. In females, the diagnosis of HIGM1 is extremely rare. Heterozygous females are usually asymptomatic unless there is skewed X-chromosome inactivation. [12] The diagnosis of hyper IgM syndrome can be done via the following methods and tests: [1]

Treatment

The primary goal is to address the underlying defect in CD40L or other gene mutations causing HIGM. The potential for precise correction of the CD40LG gene in T cells and hematopoietic stem/progenitor cells (HSPC) to treat X-linked hyper-IgM Syndrome (HIGM1) is a promising avenue of research. However, the actual therapeutic efficacy of this approach is not yet fully understood and requires further investigation to determine its true potential. In addition to HSCT, supportive measures are crucial for managing infections and complications associated with HIGM. This may include antimicrobial prophylaxis, immunoglobulin replacement therapy, and close monitoring of respiratory and gastrointestinal infections. Additionally, anti-microbial therapy, use of granulocyte colony-stimulating factor, immunosuppressants, as well as other treatments, may be needed. [7] [17]

Epidemiology

All forms of hyper-IgM syndrome are rare. According to the US X-HIGM registry, the prevalence of X-linked hyper IgM syndrome (X-HIGM) during the period from 1984 to 1993 was approximately 1 in 1,000,000 live births. The estimated frequency of CD40L deficiency, a subtype of X-HIGM, is 2 in 1,000,000 in males. Limited data is available on the frequency of AICDA deficiency, another subtype of X-HIGM, but it is believed to affect less than 1 in 1,000,000 individuals. Globally, all forms of HIGM make up approximately 0.3% to 2.9% of all patients diagnosed with primary immunodeficiency disorders (PIDs). [8]

See also

Related Research Articles

<span class="mw-page-title-main">X-linked agammaglobulinemia</span> Medical condition

X-linked agammaglobulinemia (XLA) is a rare genetic disorder discovered in 1952 that affects the body's ability to fight infection. As the form of agammaglobulinemia that is X-linked, it is much more common in males. In people with XLA, the white blood cell formation process does not generate mature B cells, which manifests as a complete or near-complete lack of proteins called gamma globulins, including antibodies, in their bloodstream. B cells are part of the immune system and normally manufacture antibodies, which defend the body from infections by sustaining a humoral immunity response. Patients with untreated XLA are prone to develop serious and even fatal infections. A mutation occurs at the Bruton's tyrosine kinase (Btk) gene that leads to a severe block in B cell development and a reduced immunoglobulin production in the serum. Btk is particularly responsible for mediating B cell development and maturation through a signaling effect on the B cell receptor BCR. Patients typically present in early childhood with recurrent infections, in particular with extracellular, encapsulated bacteria. XLA is deemed to have a relatively low incidence of disease, with an occurrence rate of approximately 1 in 200,000 live births and a frequency of about 1 in 100,000 male newborns. It has no ethnic predisposition. XLA is treated by infusion of human antibody. Treatment with pooled gamma globulin cannot restore a functional population of B cells, but it is sufficient to reduce the severity and number of infections due to the passive immunity granted by the exogenous antibodies.

Hypogammaglobulinemia is an immune system disorder in which not enough gamma globulins are produced in the blood. This results in a lower antibody count, which impairs the immune system, increasing risk of infection. Hypogammaglobulinemia may result from a variety of primary genetic immune system defects, such as common variable immunodeficiency, or it may be caused by secondary effects such as medication, blood cancer, or poor nutrition, or loss of gamma globulins in urine, as in nonselective glomerular proteinuria. Patients with hypogammaglobulinemia have reduced immune function; important considerations include avoiding use of live vaccines, and take precautionary measures when traveling to regions with endemic disease or poor sanitation such as receiving immunizations, taking antibiotics abroad, drinking only safe or boiled water, arranging appropriate medical cover in advance of travel, and ensuring continuation of any immunoglobulin infusions needed.

Common variable immunodeficiency (CVID) is an immune disorder characterized by recurrent infections and low antibody levels, specifically in immunoglobulin (Ig) types IgG, IgM, and IgA. Symptoms generally include high susceptibility to foreign invaders, chronic lung disease, and inflammation and infection of the gastrointestinal tract. CVID affects males and females equally. The condition can be found in children or teens but is generally not diagnosed or recognized until adulthood. The average age of diagnosis is between 20 and 50. However, symptoms vary greatly between people. "Variable" refers to the heterogeneous clinical manifestations of this disorder, which include recurrent bacterial infections, increased risk for autoimmune disease and lymphoma, as well as gastrointestinal disease. CVID is a lifelong disease.

<span class="mw-page-title-main">CD40 (protein)</span> Mammalian protein found in Homo sapiens

Cluster of differentiation 40, CD40 is a type I transmembrane protein found on antigen-presenting cells and is required for their activation. The binding of CD154 (CD40L) on TH cells to CD40 activates antigen presenting cells and induces a variety of downstream effects.

Hypergammaglobulinemia is a medical condition with elevated levels of gamma globulin. It is a type of immunoproliferative disorder.

<span class="mw-page-title-main">CD154</span> Protein-coding gene in humans

CD154, also called CD40 ligand or CD40L, is a protein that is primarily expressed on activated T cells and is a member of the TNF superfamily of molecules. It binds to CD40 on antigen-presenting cells (APC), which leads to many effects depending on the target cell type. In total CD40L has three binding partners: CD40, α5β1 integrin and integrin αIIbβ3. CD154 acts as a costimulatory molecule and is particularly important on a subset of T cells called T follicular helper cells. On TFH cells, CD154 promotes B cell maturation and function by engaging CD40 on the B cell surface and therefore facilitating cell-cell communication. A defect in this gene results in an inability to undergo immunoglobulin class switching and is associated with hyper IgM syndrome. Absence of CD154 also stops the formation of germinal centers and therefore prohibiting antibody affinity maturation, an important process in the adaptive immune system.

<span class="mw-page-title-main">Hyper-IgM syndrome type 1</span> Medical condition

Hyper IgM Syndrome Type 1 (HIGM-1) is the X-linked variant of the hyper IgM syndrome.

<span class="mw-page-title-main">Hyper-IgM syndrome type 2</span> Primary immune deficiency disorder

Hyper IgM Syndrome Type 2 is a rare disease. Unlike other hyper-IgM syndromes, Type 2 patients identified thus far did not present with a history of opportunistic infections. One would expect opportunistic infections in any immunodeficiency syndrome. The responsible genetic lesion is in the AICDA gene found at 12p13.

<span class="mw-page-title-main">Hyper-IgM syndrome type 5</span> Primary immune deficiency disorder

The fifth type of hyper-IgM syndrome has been characterized in three patients from France and Japan. The symptoms are similar to hyper IgM syndrome type 2, but the AICDA gene is intact.

Primary immunodeficiencies are disorders in which part of the body's immune system is missing or does not function normally. To be considered a primary immunodeficiency (PID), the immune deficiency must be inborn, not caused by secondary factors such as other disease, drug treatment, or environmental exposure to toxins. Most primary immunodeficiencies are genetic disorders; the majority are diagnosed in children under the age of one, although milder forms may not be recognized until adulthood. While there are over 430 recognized inborn errors of immunity (IEIs) as of 2019, the vast majority of which are PIDs, most are very rare. About 1 in 500 people in the United States are born with a primary immunodeficiency. Immune deficiencies can result in persistent or recurring infections, auto-inflammatory disorders, tumors, and disorders of various organs. There are currently limited treatments available for these conditions; most are specific to a particular type of PID. Research is currently evaluating the use of stem cell transplants (HSCT) and experimental gene therapies as avenues for treatment in limited subsets of PIDs.

An immune disorder is a dysfunction of the immune system. These disorders can be characterized in several different ways:

<span class="mw-page-title-main">IgG deficiency</span> Form of immune disorder

IgG deficiency is a form of dysgammaglobulinemia where the proportional levels of the IgG isotype are reduced relative to other immunoglobulin isotypes.

<span class="mw-page-title-main">Isolated primary immunoglobulin M deficiency</span> Medical condition

Isolated primary immunoglobulin M deficiency is a poorly defined dysgammaglobulinemia characterized by decreased levels of IgM while levels of other immunoglobulins are normal. The immunodeficiency has been associated with some clinical disorders including recurrent infections, atopy, Bloom's syndrome, celiac disease, systemic lupus erythematosus and malignancy, but, surprisingly, SIgMD seems to also occur in asymptomatic individuals. High incidences of recurrent upper respiratory tract infections (77%), asthma (47%) and allergic rhinitis (36%) have also been reported. SIgMD seems to be a particularly rare antibody deficiency with a reported prevalence between 0.03% and 0.1%.

<span class="mw-page-title-main">Hyper-IgM syndrome type 3</span> Primary immune deficiency disorder

Hyper-IgM syndrome type 3 is a form of hyper IgM syndrome characterized by mutations of the CD40 gene. In this type, Immature B cells cannot receive signal 2 from helper T cells which is necessary to mature into mature B cells.

<span class="mw-page-title-main">Hyper-IgM syndrome type 4</span> Medical condition

Hyper-IgM syndrome type 4 is a form of Hyper IgM syndrome which is a defect in class switch recombination downstream of the AICDA gene that does not impair somatic hypermutation.

Hans Dieter Ochs, is an immunologist and pediatrician. He is Professor of Pediatrics, Division of Immunology, Department of Pediatrics, University of Washington School of Medicine, Seattle.

<span class="mw-page-title-main">Cernunnos deficiency</span> Medical condition

Cernunnos deficiency is a form of combined immunodeficiency characterized by microcephaly, due to mutations in the NHEJ1 gene, it is inherited via autosomal recessive manner Management for this condition is antiviral prophylaxis and antibiotic treatment

<span class="mw-page-title-main">DOCK8 deficiency</span> Medical condition

DOCK8 deficiency, also called DOCK8 immunodeficiency syndrome, is the autosomal recessive form of hyperimmunoglobulin E syndrome, a genetic disorder characterized by elevated immunoglobulin E levels, eosinophilia, and recurrent infections with staphylococcus and viruses. It is caused by a mutation in the DOCK8 gene.

Nuclear factor-kappa B Essential Modulator (NEMO) deficiency syndrome is a rare type of primary immunodeficiency disease that has a highly variable set of symptoms and prognoses. It mainly affects the skin and immune system but has the potential to affect all parts of the body, including the lungs, urinary tract and gastrointestinal tract. It is a monogenetic disease caused by mutation in the IKBKG gene. NEMO is the modulator protein in the IKK inhibitor complex that, when activated, phosphorylates the inhibitor of the NF-κB transcription factors allowing for the translocation of transcription factors into the nucleus.

References

  1. 1 2 3 4 5 "X-linked Immunodeficiency With Hyper IgM Clinical Presentation: History, Physical, Causes". emedicine.medscape.com. Retrieved 27 November 2016.
  2. 1 2 "OMIM Entry – # 308230 – IMMUNODEFICIENCY WITH HYPER-IgM, TYPE 1; HIGM1". omim.org. Retrieved 16 November 2016.
  3. 1 2 "OMIM Entry – # 605258 – IMMUNODEFICIENCY WITH HYPER-IgM, TYPE 2; HIGM2". omim.org. Retrieved 16 November 2016.
  4. "OMIM Entry – # 606843 – IMMUNODEFICIENCY WITH HYPER-IgM, TYPE 3; HIGM3". omim.org. Retrieved 16 November 2016.
  5. 1 2 "OMIM Entry – # 608106 – IMMUNODEFICIENCY WITH HYPER-IgM, TYPE 5; HIGM5". omim.org. Retrieved 16 November 2016.
  6. "OMIM Entry – 608184 – IMMUNODEFICIENCY WITH HYPER-IgM, TYPE 4; HIGM4". omim.org. Retrieved 2 January 2018.
  7. 1 2 3 4 Johnson, Judith; Filipovich, Alexandra H.; Zhang, Kejian (1 January 1993). "X-Linked Hyper IgM Syndrome". GeneReviews. PMID   20301576 . Retrieved 12 November 2016.update 2013
  8. 1 2 3 Yazdani, Reza; Fekrvand, Saba; Shahkarami, Sepideh; Azizi, Gholamreza; Moazzami, Bobak; Abolhassani, Hassan; Aghamohammadi, Asghar (1 January 2019). "The hyper IgM syndromes: Epidemiology, pathogenesis, clinical manifestations, diagnosis and management". Clinical Immunology. 198: 19–30. doi:10.1016/j.clim.2018.11.007. ISSN   1521-6616. S2CID   53566466.
  9. 1 2 Jhamnani, Rekha D.; Nunes-Santos, Cristiane J.; Bergerson, Jenna; Rosenzweig, Sergio D. (2018). "Class-Switch Recombination (CSR)/Hyper-IgM (HIGM) Syndromes and Phosphoinositide 3-Kinase (PI3K) Defects". Frontiers in Immunology. 9. doi: 10.3389/fimmu.2018.02172 . ISSN   1664-3224. PMID   30319630.
  10. Leven, Emily A.; Maffucci, Patrick; Ochs, Hans D.; Scholl, Paul R.; Buckley, Rebecca H.; Fuleihan, Ramsay L.; Geha, Raif S.; Cunningham, Coleen K.; Bonilla, Francisco A.; Conley, Mary Ellen; Ferdman, Ronald M.; Hernandez-Trujillo, Vivian; Puck, Jennifer M.; Sullivan, Kathleen; Secord, Elizabeth A. (July 2016). "Hyper IgM Syndrome: a Report from the USIDNET Registry". Journal of Clinical Immunology. 36 (5): 490–501. doi:10.1007/s10875-016-0291-4. ISSN   0271-9142. PMC   5039943 . PMID   27189378.
  11. Lanzi, Gaetana; Ferrari, Simona; Vihinen, Mauno; Caraffi, Stefano; Kutukculer, Necil; Schiaffonati, Luisa; Plebani, Alessandro; Notarangelo, Luigi Daniele; Maria Fra, Anna; Giliani, Silvia (23 December 2010). "Different molecular behavior of CD40 mutants causing hyper-IgM syndrome". Blood. 116 (26): 5867–5874. doi: 10.1182/blood-2010-03-274241 . ISSN   0006-4971. PMID   20702779. S2CID   33972331.
  12. 1 2 Dunn, Clinton P.; de la Morena, M. Teresa (1993), Adam, Margaret P.; Mirzaa, Ghayda M.; Pagon, Roberta A.; Wallace, Stephanie E. (eds.), "X-Linked Hyper IgM Syndrome", GeneReviews®, Seattle (WA): University of Washington, Seattle, PMID   20301576 , retrieved 22 June 2023
  13. Davies, E Graham; Thrasher, Adrian J (27 November 2016). "Update on the hyper immunoglobulin M syndromes". British Journal of Haematology. 149 (2): 167–180. doi:10.1111/j.1365-2141.2010.08077.x. ISSN   0007-1048. PMC   2855828 . PMID   20180797.
  14. Etzioni, Amos; Ochs, Hans D. (1 October 2004). "The Hyper IgM Syndrome—An Evolving Story". Pediatric Research. 56 (4): 519–525. doi: 10.1203/01.PDR.0000139318.65842.4A . ISSN   0031-3998. PMID   15319456.
  15. Reference, Genetics Home. "X-linked hyper IgM syndrome". Genetics Home Reference. Retrieved 27 November 2016.
  16. Reference, Genetics Home. "CD40 gene". Genetics Home Reference. Retrieved 27 November 2016.
  17. Vavassori, Valentina; Mercuri, Elisabetta; Marcovecchio, Genni E; Castiello, Maria C; Schiroli, Giulia; Albano, Luisa; Margulies, Carrie; Buquicchio, Frank; Fontana, Elena; Beretta, Stefano; Merelli, Ivan; Cappelleri, Andrea; Rancoita, Paola MV; Lougaris, Vassilios; Plebani, Alessandro (5 March 2021). "Modeling, optimization, and comparable efficacy of T cell and hematopoietic stem cell gene editing for treating hyper‐IgM syndrome". EMBO Molecular Medicine. 13 (3): e13545. doi:10.15252/emmm.202013545. ISSN   1757-4676. PMC   7933961 . PMID   33475257.

Further reading